Skip to main content
Log in

A Unified Motion Generation Approach for Quadruped L-S Walk and Trot Gaits Based on Linear Model Predictive Control

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The goal of this paper is to develop a unified online motion generation scheme for quadruped lateral-sequence walk and trot gaits based on a linear model predictive control formulation. Specifically, the dynamics of the linear pendulum model is formulated over a predictive horizon by dimensional analysis. Through gait pattern conversion, the lateral-sequence walk and trot gaits of the quadruped can be regarded as unified biped gaits, allowing the dynamics of the linear inverted pendulum model to serve quadruped motion generation. In addition, a simple linearization of the center of pressure constraints for these quadruped gaits is developed for linear model predictive control problem. Furthermore, the motion generation problem can be solved online by quadratic programming with foothold adaptation. It is demonstrated that the proposed unified scheme can generate stable locomotion online for quadruped lateral-sequence walk and trot gaits, both in simulation and on hardware. The results show significant performance improvements compared to previous work. Moreover, the results also suggest the linearly simplified scheme has the ability to robustness against unexpected disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

The datasets generated and analyzed during the current study are not publicly available as the data also forms part of an ongoing study but are available from the corresponding author on reasonable request.

References

  1. Li, J., Gao, H. B., Wan, Y. H., Yu, H. T., & Zhou, C. X. (2023). A real-time planning and control framework for robust and dynamic quadrupedal locomotion. Journal of Bionic Engineering, 20, 1449–1466.

    Article  Google Scholar 

  2. Tranzatto, M., Miki, T., Dharmadhikari, M., Bernreiter, L., Kulkarni, M., Mascarich, F., Andersson, O., Khattak, S., Hutter, M., Siegwart, R., & Alexis, K. (2022). Cerberus in the darpa subterranean challenge. Science Robotics, 7(66), eabp9742.

    Article  Google Scholar 

  3. Lu, G., Chen, T., Rong, X., Zhang, G., Bi, J., Cao, J., Jiang, H., & Li, Y. (2023). Whole-body motion planning and control of a quadruped robot for challenging terrain. Journal of Field Robotics, 40(6), 1657–1677.

    Article  Google Scholar 

  4. Carpentier, J., & Wieber, P. B. (2021). Recent progress in legged robots locomotion control. Current Robotics Reports, 2(3), 231–238.

    Article  Google Scholar 

  5. Yu, H. T., Gao, H. B., & Deng, Z. Q. (2020). Toward a unified approximate analytical representation for spatially running spring-loaded inverted pendulum model. IEEE Transactions on Robotics, 37(2), 691–698.

    Article  Google Scholar 

  6. Sun, H., Yang, J. J., Jia, Y. H., & Wang, C. H. (2023). Posture control of legged locomotion based on virtual pivot point concept. Journal of Bionic Engineering, 20(6), 1–20.

    Article  Google Scholar 

  7. Shi, Y. P., Yu, B., Ba, K. X., & Li, M. T. (2023). A unified trajectory optimization approach for long-term and reactive motion planning of legged locomotion. Journal of Bionic Engineering, 20, 2108–2122.

    Article  Google Scholar 

  8. Gong, Y. K., & Grizzle, J. (2021). One-step ahead prediction of angular momentum about the contact point for control of bipedal locomotion: validation in a lip-inspired controller. Proceedings of 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2832 – 2838). Xi’an, China.

  9. Kajita, S., & Tani, K. (1991). Study of dynamic biped locomotion on rugged terrain-theory and basic experiment. Proceedings of Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments (pp. 741–746). Pisa, Italy.

  10. Motoi, N., Suzuki, T., & Ohnishi, K. (2008). A bipedal locomotion planning based on virtual linear inverted pendulum mode. IEEE Transactions on Industrial Electronics, 56(1), 54–61.

    Article  Google Scholar 

  11. Liu, C. J., Zhang, T., Liu, M., & Chen, Q. J. (2020). Active balance control of humanoid locomotion based on foot position compensation. Journal of Bionic Engineering, 17, 134–147.

    Article  Google Scholar 

  12. Scianca, N., De Simone, D., Lanari, L., & Oriolo, G. (2020). MPC for humanoid gait generation: Stability and feasibility. IEEE Transactions on Robotics, 36(4), 1171–1188.

    Article  Google Scholar 

  13. Bjelonic, M., Grandia, R., Geilinger, M., Harley, O., Medeiros, V. S., Pajovic, V., Jelavic, E., Coros, S., & Hutter, M. (2022). Offline motion libraries and online MPC for advanced mobility skills. The International Journal of Robotics Research, 41(9–10), 903–924.

    Article  Google Scholar 

  14. Budhiraja, R., Carpentier, J., & Mansard, N. (2019). Dynamics consensus between centroidal and whole-body models for locomotion of legged robots. Proceedings of 2019 International Conference on Robotics and Automation (ICRA) (pp. 6727–6733). Montreal, QC, Canada.

  15. Du, W. Q., Fnadi, M., Moullet, E., & Benamar, F. (2021). Leg centroidal dynamics based new locomotion principle of a quadruped robot with on-line legged motion generation. Journal of Intelligent & Robotic Systems, 103(4), 1–34.

    Article  Google Scholar 

  16. Winkler, A. W., Bellicoso, C. D., Hutter, M., & Buchli, J. (2018). Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robotics and Automation Letters, 3(3), 1560–1567.

    Article  Google Scholar 

  17. Xin, G. Y., Xin, S. Y., Cebe, O., Pollayil, M. J., Angelini, F., Garabini, M., Vijayakumar, S., & Mistry, M. (2021). Robust footstep planning and LQR control for dynamic quadrupedal locomotion. IEEE Robotics and Automation Letters, 6(3), 4488–4495.

    Article  Google Scholar 

  18. Hong, Y. D., Park, C. S., & Kim, J. H. (2013). Stable bipedal walking with a vertical center-of-mass motion by an evolutionary optimized central pattern generator. IEEE Transactions on Industrial Electronics, 61(5), 2346–2355.

    Article  Google Scholar 

  19. Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation learning: A survey of learning methods. ACM Computing Surveys (CSUR), 50(2), 1–35.

    Article  Google Scholar 

  20. Xin, S. Y., Orsolino, R., & Tsagarakis, N. (2019). Online relative footstep optimization for legged robots dynamic walking using discrete-time model predictive control. Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 513–520). Macau, China.

  21. Herdt, A., Diedam, H., Wieber, P. B., Dimitrov, D., Mombaur, K., & Diehl, M. (2010). Online walking motion generation with automatic footstep placement. Advanced Robotics, 24(5–6), 719–737.

    Article  Google Scholar 

  22. Akbas, T., Eskimez, S. E., Ozel, S., Adak, O. K., Fidan, K. C., & Erbatur, K. (2012). Zero moment point based pace reference generation for quadruped robots via preview control. Proceedings of 2012 12th IEEE International Workshop on Advanced Motion Control (AMC) (pp. 1–7). Sarajevo, Bosnia and Herzegovina.

  23. Shi, Y. P, Wang, P. F., Li, M. T., Wang, X., Jiang, Z. Y., & Li, Z. B. (2019). Model predictive control for motion planning of quadrupedal locomotion. Proceedings of 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM) (pp. 87–92). Toyonaka, Japan.

  24. Kajita, S., Hirukawa, H., Harada, K., & Yokoi, K. (2014). Introduction to Humanoid Robotics (pp. 126–133). Berlin: Springer.

    Book  Google Scholar 

  25. Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., & Diehl, M. (2014). qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation, 6(4), 327–363.

    Article  MathSciNet  Google Scholar 

  26. Wang, S. G., Ma, K., Deng, X., & Liao, X. L. (2022). Quadruped robot foot-end trajectory generation algorithm. Proceedings of Second International Conference on Computation, Communication and Engineering (pp. 114–119). Guangzhou, China.

  27. Shi, Y. P., Wang, P. F., Wang, X., Zha, F. S., Jiang, Z. Y., Guo, W., & Li, M. T. (2018). Bio-inspired equilibrium point control scheme for quadrupedal locomotion. IEEE Transactions on Cognitive and Developmental Systems, 11(2), 200–209.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52305072 and 52122503), Natural Science Foundation of Hebei Province of China (No. E2022203095), University-Industry Collaborative Education Program (No. 220603936245709), Cultivation Project for Basic Research and Innovation of Yanshan University (No. 2021LGQN004), and Shenzhen Special Fund for Future Industrial Development (No. KJZD20230923114222045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaokun Leng.

Ethics declarations

Conflict of interest

The authors declare that they have no conficts of interest relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., He, Z., Leng, X. et al. A Unified Motion Generation Approach for Quadruped L-S Walk and Trot Gaits Based on Linear Model Predictive Control. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00533-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00533-3

Keywords

Navigation