Skip to main content
Log in

Posture Control of Legged Locomotion Based on Virtual Pivot Point Concept

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper presents a novel control approach for achieving robust posture control in legged locomotion, specifically for SLIP-like bipedal running and quadrupedal bounding with trunk stabilization. The approach is based on the virtual pendulum concept observed in human and animal locomotion experiments, which redirects ground reaction forces to a virtual support point called the Virtual Pivot Point (VPP) during the stance phase. Using the hybrid averaging theorem, we prove the upright posture stability of bipedal running with a fixed VPP position and propose a VPP angle feedback controller for online VPP adjustment to improve performance and convergence speed. Additionally, we present the first application of the VPP concept to quadrupedal posture control and design a VPP position feedback control law to enhance robustness in quadrupedal bounding. We evaluate the effectiveness of the proposed VPP-based controllers through various simulations, demonstrating their effectiveness in posture control of both bipedal running and quadrupedal bounding. The performance of the VPP-based control approach is further validated through experimental validation on a quadruped robot, SCIT Dog, for stable bounding motion generation at different forward speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Chiel, H. J., Beer, R. D., Quinn, R. D., & Espenschied, K. S. (1992). Robustness of a distributed neural network controller for locomotion in a hexapod robot. IEEE Transactions on Robotics and Automation, 8, 293–303.

    Article  Google Scholar 

  2. Saranli, U., Buehler, M., & Koditschek, D. E. (2001). Rhex: A simple and highly mobile hexapod robot. The International Journal of Robotics Research, 20, 616–631.

    Article  Google Scholar 

  3. Barasuol, V., Buchli, J., Semini, C., Frigerio, M., DePieri, E. R., & Caldwell, D. G. (2013). A reactive controller framework for quadrupedal locomotion on challenging terrain. 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2554-2561.

  4. Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., & Caldwell, D. G. (2011). Design of hyq-A hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225, 831–849.

    Google Scholar 

  5. Yu, H., Gao, H., Ding, L., Li, M., Deng, Z., & Liu, G. (2016). Gait generation with smooth transition using cpg-based locomotion control for hexapod walking robot. IEEE Transactions on Industrial Electronics, 63, 5488–5500.

    Article  Google Scholar 

  6. Yazdani, M., Salarieh, H., & Foumani, M. S. (2018). Decentralized control of rhythmic activities in fully-actuated/under-actuated robots. Robotics and Autonomous Systems, 101, 20–33.

    Article  Google Scholar 

  7. Liu, C., Xia, L., Zhang, C., & Chen, Q. (2018). Multi-layered cpg for adaptive walking of quadruped robots. Journal of Bionic Engineering, 15, 341–355.

    Article  Google Scholar 

  8. Zhang, W., Gong, Q., Yang, H., & Tang, Y. (2023). CPG modulates the omnidirectional motion of a hexapod robot in unstructured terrain. Journal of Bionic Engineering, 20, 558–567.

    Article  Google Scholar 

  9. Gehring, C., Coros, S., Hutter, M., Bloesch, M., Hoepflinger, M. A., & Siegwart, R. (2013). Control of dynamic gaits for a quadrupedal robot. 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 3287-3292.

  10. Focchi, M., DelPrete, A., Havoutis, I., Featherstone, R., Caldwell, D. G., & Semini, C. (2017). High-slope terrain locomotion for torque-controlled quadruped robots. Autonomous Robots, 41, 259–272.

    Article  Google Scholar 

  11. Hutter, M., Sommer, H., Gehring, C., Hoepflinger, M., Bloesch, M., & Siegwart, R. (2014). Quadrupedal locomotion using hierarchical operational space control. The International Journal of Robotics Research, 33, 1047–1062.

    Article  Google Scholar 

  12. DiCarlo, J., Wensing, P. M., Katz, B., Bledt, G., & Kim, S. (2018). Dynamic locomotion in the mit cheetah 3 through convex model-predictive control. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1-9.

  13. Bledt, G., Powell, M. J., Katz, B., DiCarlo, J., Wensing, P. M., & Kim, S. (2018). Mit cheetah 3: design and control of a robust, dynamic quadruped robot. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2245-2252.

  14. Sun, H., Yang, J., An, H., & Wang, C. (2021). Improved online adjustment of step timing and location for legged locomotion. Journal of Intelligent Robotic Systems, 102, 37.

    Article  Google Scholar 

  15. Shi, Y., Yu, B., Ba, K., & Li, M. (2023). A unified trajectory optimization approach for long-term and reactive motion planning of legged locomotion. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00362-w.

    Article  Google Scholar 

  16. Full, R. J., & Koditschek, D. E. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202, 3325–3332.

    Article  Google Scholar 

  17. Raibert, M. H. (1986). Legged Robots That Balance. MIT press.

    Book  MATH  Google Scholar 

  18. Shahbazi, M., Babuška, R., & Lopes, G. A. (2016). Unified modeling and control of walking and running on the spring-loaded inverted pendulum. IEEE Transactions on Robotics, 32, 1178–1195.

    Article  Google Scholar 

  19. Sharbafi, M. A., Maufroy, C., Maus, H. M., Seyfarth, A., Ahmadabadi, M. N., & Yazdanpanah, M. J. (2012). Controllers for robust hopping with upright trunk based on the virtual pendulum concept. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2222-2227.

  20. Poulakakis, I., & Grizzle, J. W. (2009). The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper. IEEE Transactions on Automatic Control, 54, 1779–1793.

    Article  MathSciNet  MATH  Google Scholar 

  21. Maus, H. M., Lipfert, S., Gross, M., Rummel, J., & Seyfarth, A. (2010). Upright human gait did not provide a major mechanical challenge for our ancestors. Nature Communications, 1, 1–6.

    Article  Google Scholar 

  22. Sharbafi, M. A., Maufroy, C., Ahmadabadi, M. N., Yazdanpanah, M. J., & Seyfarth, A. (2013). Robust hopping based on virtual pendulum posture control. Bioinspiration and Biomimetics, 8, 002.

    Article  Google Scholar 

  23. Firouzi, V., Bahrami, F., & Sharbafi, M. A. (2022). Human balance control in 3d running based on virtual pivot point concept. Journal of Experimental Biology, 225, 080.

    Article  Google Scholar 

  24. De, A., Burden, S. A., & Koditschek, D. E. (2018). A hybrid dynamical extension of averaging and its application to the analysis of legged gait stability. The International Journal of Robotics Research, 37, 266–286.

    Article  Google Scholar 

  25. Sun, H., Yang, J., Jia, Y., Li, Q., & Wang, C. (2022). Spring-loaded inverted pendulum hopping via hybrid averaging and control lyapunov function. Journal of Bionic Engineering, 20, 291–307.

    Article  Google Scholar 

  26. Hauser, J., & Chung, C. C. (1994). Converse lyapunov functions for exponentially stable periodic orbits. Systems Control Letters, 23, 27–34.

    Article  MathSciNet  MATH  Google Scholar 

  27. Johnson, A. M., Burden, S. A., & Koditschek, D. E. (2016). A hybrid systems model for simple manipulation and self-manipulation systems. The International Journal of Robotics Research, 35, 1354–1392.

    Article  Google Scholar 

  28. De, A. (2017). Modular hopping and running via parallel composition. PhD thesis, University of Pennsylvania.

  29. Bellicoso, C. D., Gehring, C., Hwangbo, J., Fankhauser, P., & Hutter, M. (2016). Perception-less terrain adaptation through whole body control and hierarchical optimization. 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 558-564.

  30. Bloesch, M., Gehring, C., Fankhauser, P., Hutter, M., Hoepflinger, M. A., & Siegwart, R. (2013). State estimation for legged robots on unstable and slippery terrain. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 6058-6064.

Download references

Acknowledgements

This work was supported by the Touyan Innovation Program of Heilongjiang Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 68038 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yang, J., Jia, Y. et al. Posture Control of Legged Locomotion Based on Virtual Pivot Point Concept. J Bionic Eng 20, 2683–2702 (2023). https://doi.org/10.1007/s42235-023-00410-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00410-5

Keywords

Navigation