Skip to main content
Log in

In Situ Reconfiguration of Assembling Pattern for Modular Continuum Robots

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Modular continuum robots possess significant versatility across various scenarios; however, conventional assembling methods typically rely on linear connection between modules. This limitation can impede the robotic interaction capabilities, especially in specific engineering applications. Herein, inspired by the assembling pattern between the femur and tibia in a human knee, we proposed a multidirectional assembling strategy. This strategy encompasses linear, oblique, and orthogonal connections, allowing a two-module continuum robot to undergo in-situ reconfiguration into three distinct initial configurations. To anticipate the final configuration resulting from diverse assembling patterns, we employed the positional formulation finite element framework to establish a mechanical model, and the theoretical results reveal that our customizable strategy can offer an effective route for robotic interactions. We showcased diverse assembling patterns for coping with interaction requirements. The experimental results indicate that our modular continuum robot not only reconfigures its initial profile in situ but also enables on-demand regulation of the final configuration. These capabilities provide a foundation for the future development of modular continuum robots, enabling them to be adaptable to diverse environments, particularly in unstructured surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Robinson, G., & Davies, J. B. C. (1999). Continuum robots-a state of the art. Proceedings IEEE International Conference on Robotics and Automation, Detroit, USA, 4, 2849–2854. https://doi.org/10.1109/ROBOT.1999.774029

    Article  Google Scholar 

  2. Yang, C. H., Geng, S. N., Walker, I., Branson, D. T., Liu, J. G., Dai, J. S., & Kang, R. J. (2020). Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. The International Journal of Robotics Research, 39(14), 1620–1634. https://doi.org/10.1177/027836492091392

    Article  Google Scholar 

  3. Liu, Z. Z., Zhang, X. G., Cai, Z. Q., Peng, H. J., & Wu, Z. G. (2021). Real-time dynamics of cable-driven continuum robots considering the cable constraint and friction effect. IEEE Robotics and Automation Letters, 6(4), 6235–6242. https://doi.org/10.1109/LRA.2021.3086413

    Article  Google Scholar 

  4. Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P., & Menciassi, A. (2014). Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach. Soft Robotics, 1(2), 122–131. https://doi.org/10.1089/soro.2014.0001

    Article  Google Scholar 

  5. Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J., & Walsh, C. J. (2015). Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73, 135–143. https://doi.org/10.1016/j.robot.2014.08.014

    Article  Google Scholar 

  6. Janabi-Sharifi, F., Jalali, A., & Walker, I. D. (2021). Cosserat rod-based dynamic modeling of tendon-driven continuum robots: A tutorial. IEEE Access, 9, 68703–68719. https://doi.org/10.1109/ACCESS.2021.3077186

    Article  Google Scholar 

  7. Wang, L., & Simaan, N. (2019). Geometric calibration of continuum robots: Joint space and equilibrium shape deviations. IEEE Transactions on Robotics, 35(2), 387–402. https://doi.org/10.1109/TRO.2018.2881049

    Article  Google Scholar 

  8. Amanov, E., Nguyen, T. D., & Burgner-Kahrs, J. (2021). Tendon-driven continuum robots with extensible sections—A model-based evaluation of path-following motions. The International Journal of Robotics Research, 40(1), 7–23. https://doi.org/10.1177/0278364919886047

    Article  Google Scholar 

  9. Yang, J. Z., Peng, H. J., Zhou, W. Y., Zhang, J., & Wu, Z. G. (2021). A modular approach for dynamic modeling of multisegment continuum robots. Mechanism and Machine Theory, 165, 104429. https://doi.org/10.1016/j.mechmachtheory.2021.104429

    Article  Google Scholar 

  10. Liu, Z. Z., Cai, Z. Q., Peng, H. J., Zhang, X. G., & Wu, Z. G. (2022). Morphology and tension perception of cable-driven continuum robots. IEEE/ASME Transactions on Mechatronics, 28(1), 314–325. https://doi.org/10.1109/TMECH.2022.3198093

    Article  Google Scholar 

  11. Yang, H. Y., Jin, S. Y., & Wang, W. D. (2022). Modular assembly of soft machines via multidirectional reclosable fasteners. Advanced Intelligent Systems, 4(7), 2200048. https://doi.org/10.1002/aisy.202200048

    Article  Google Scholar 

  12. Chien, J. L., Clarissa, L. T. L., & Liu, J. M., Low, J., & Foong, S. (2021). Kinematic model predictive control for a novel tethered aerial cable-driven continuum robot (pp. 1348–1354). ELECTR NETWORK. https://doi.org/10.1109/AIM46487.2021.9517606

    Google Scholar 

  13. Zhang, C., Zhu, P. A., Lin, Y. Q., Jiao, Z. D., & Zou, J. (2020). Modular soft robotics: Modular units, connection mechanisms, and applications. Advanced Intelligent Systems, 2(6), 1900166. https://doi.org/10.1002/aisy.201900166

    Article  Google Scholar 

  14. Gilpin, K., & Rus, D. (2010). Modular robot systems. IEEE Robotics & Automation Magazine, 17, 38–55. https://doi.org/10.1109/MRA.2010.937859

    Article  Google Scholar 

  15. Chennareddy, S., Agrawal, A., & Karuppiah, A. (2017). Modular self-reconfigurable robotic systems: A survey on hardware architectures. Journal of Robotics, 2017, 5013532. https://doi.org/10.1155/2017/5013532

    Article  Google Scholar 

  16. Murata, S., & Kurokawa, H. (2007). Self-reconfigurable robots. IEEE Robotics & Automation Magazine, 14(1), 71–78. https://doi.org/10.1109/MRA.2007.339607

    Article  Google Scholar 

  17. Wu, Z. H., Li, Q., Zhao, J. R., Gao, J. P., & Xu, K. (2019). Design of a modular continuum-articulated laparoscopic robotic tool with decoupled kinematics. IEEE Robotics and Automation Letters, 4(4), 3545–3552. https://doi.org/10.1109/LRA.2019.2927929

    Article  Google Scholar 

  18. Burgner-Kahrs, J., Rucker, D. C., & Choset, H. (2015). Continuum robots for medical applications: A survey. IEEE Transactions on Robotics, 31(6), 1261–1280. https://doi.org/10.1109/TRO.2015.2489500

    Article  Google Scholar 

  19. Qin, G. D., Ji, A. H., Cheng, Y., Zhao, W. L., Pan, H. T., Shi, S. S., & Song, Y. T. (2022). A snake-inspired layer-driven continuum robot. Soft Robotics, 9(4), 788–797. https://doi.org/10.1089/soro.2020.0165

    Article  Google Scholar 

  20. Chen, X. B., Yao, J. T., Li, T., Li, H. L., Zhou, P., Xu, Y. D., & Zhao, Y. S. (2021). Development of a multi-cable-driven continuum robot controlled by parallel platforms. Journal of Mechanisms and Robotics, 13(2), 021007. https://doi.org/10.1115/1.4048967

    Article  Google Scholar 

  21. Zhang, J., Kan, Z. Y., Li, Y., Wu, Z. G., Wu, J. N., & Peng, H. J. (2022). Novel Design of a cable-driven continuum robot with multiple motion patterns. IEEE Robotics and Automation Letters, 7(3), 6163–6170. https://doi.org/10.1109/LRA.2022.3166547

    Article  Google Scholar 

  22. Zhang, J., Li, Y., Kan, Z. Y., Yuan, Q. F., Rajabi, H., Wu, Z. G., Peng, H. J., & Wu, J. N. (2023). A preprogrammable continuum robot inspired by elephant trunk for dexterous manipulation. Soft Robotics, 10(3), 636–646. https://doi.org/10.1089/soro.2022.0048

    Article  Google Scholar 

  23. Santoso, J., & Onal, C. D. (2021). An origami continuum robot capable of precise motion through torsionally stiff body and smooth inverse kinematics. Soft Robotics, 8(4), 371–386. https://doi.org/10.1089/soro.2020.0026

    Article  Google Scholar 

  24. Yan, H. Z., Wang, Y., Shen, W. J., Li, F. M., Gao, G. R., Zheng, T. J., Xu, Z. Y., Qian, S. W., Chen, C. Y., Zhang, C., Yang, G. L., & Chen, T. (2022). Cable-driven continuum robot perception using skin-like hydrogel sensors. Advanced Functional Materials, 32(34), 2203241. https://doi.org/10.1002/adfm.202203241

    Article  Google Scholar 

  25. Russell, F., Takeda, Y., Kormushev, P., Vaidyanathan, R., & Ellison, P. (2021). Stiffness modulation in a humanoid robotic leg and knee. IEEE Robotics and Automation Letters, 6(2), 2563–2570. https://doi.org/10.1109/LRA.2021.3062355

    Article  Google Scholar 

  26. Oliver-Butler, K., Childs, J. A., Daniel, A., & Rucker, D. C. (2021). Concentric push–pull robots: Planar modeling and design. IEEE Transactions on Robotics, 38(2), 1186–1200. https://doi.org/10.1109/TRO.2021.3104249

    Article  Google Scholar 

  27. Yuan, H., Zhou, L. L., & Xu, W. F. (2019). A comprehensive static model of cable-driven multi-section continuum robots considering friction effect. Mechanism and Machine Theory, 135, 130–149. https://doi.org/10.1016/j.mechmachtheory.2019.02.005

    Article  Google Scholar 

  28. Nguyen, T. D., & Burgner-Kahrs, J. (2015). A tendon-driven continuum robot with extensible sections (pp. 2130–2135). Hamburg, Germany: EEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2015.7353661

    Book  Google Scholar 

  29. Shah, D. S., Booth, J. W., Baines, R. L., Wang, K., Vespignani, M., Bekris, K., & Kramer-Bottiglio, R. (2022). Tensegrity robotics. Soft Robotics, 9(4), 639–656. https://doi.org/10.1089/soro.2020.0170

    Article  Google Scholar 

  30. Ma, S., Chen, M. H., & Skelton, R. E. (2022). Tensegrity system dynamics based on finite element method. Composite Structures, 280, 114838. https://doi.org/10.1016/j.compstruct.2021.114838

    Article  Google Scholar 

  31. Rone, W. S., & Ben-Tzvi, P. (2013). Continuum robot dynamics utilizing the principle of virtual power. IEEE Transactions on Robotics, 30(1), 275–287. https://doi.org/10.1109/TRO.2013.2281564

    Article  Google Scholar 

  32. Zhang, J., Wang, B., Chen, H. H., Bai, J. N., Wu, Z. G., Liu, J., Peng, H. J., & Wu, J. N. (2023). Bioinspired continuum robots with programmable stiffness by harnessing phase change materials. Advanced Materials Technologies, 8(6), 2201616. https://doi.org/10.1002/admt.202201616

    Article  Google Scholar 

  33. Sui, D. B., Zhao, S. K., Wang, T. S., Liu, Y. B., Zhu, Y. H., & Zhao, J. (2022). Design of a bio-inspired extensible continuum manipulator with variable stiffness. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-022-00213-0

    Article  Google Scholar 

  34. Huang, X., Zou, J., & Gu, G. (2021). Kinematic modeling and control of variable curvature soft continuum robots. IEEE/ASME Transactions on Mechatronics, 26(6), 3175–3185. https://doi.org/10.1109/TMECH.2021.3055339

    Article  Google Scholar 

  35. Desai, J. P., Sheng, J., Cheng, S. S., Wang, X., Deaton, N. J., & Rahman, N. (2019). Toward patient-specific 3D-printed robotic systems for surgical interventions. IEEE Transactions on Medical Robotics and Bionics, 1(2), 77–87. https://doi.org/10.1109/TMRB.2019.2912444

    Article  Google Scholar 

  36. McCracken, J. M., Donovan, B. R., & White, T. J. (2020). Materials as machines. Advanced Materials, 32(20), 1906564. https://doi.org/10.1002/adma.201906564

    Article  Google Scholar 

  37. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467–475. https://doi.org/10.1038/nature14543

    Article  Google Scholar 

  38. Mao, S. X., Dong, E. B., Jin, H., Xu, M., Zhang, S. W., Yang, J., & Low, K. H. (2014). Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs. Journal of Bionic Engineering, 11(3), 400–411. https://doi.org/10.1016/S1672-6529(14)60053-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shenzhen Science and Technology Program (Grant No. 20220817165030002, No. GXWD2021B03), and National Natural Science Foundation of China (Grant No. 52275298 and No. 11922203).

Funding

National Natural Science Foundation of China, No. 52275298, Jianing Wu, No. 11922203, Haijun Peng,Shenzhen Science and Technology Program, No. 20220817165030002, Jianing Wu, No. GXWD2021B03, Jianing Wu

Author information

Authors and Affiliations

Authors

Contributions

Z.W., H.P., and J.W. conceived the concept. J.Z. and J.Y. performed the simulations. J.Z., J.C., and K.M. carried out experiments and data processing. J.Z. and J.W. analyzed the data and interpreted the results. H.P., and J.W. directed the project. All authors commented on the article.

Corresponding authors

Correspondence to Haijun Peng or Jianing Wu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4808 KB)

Supplementary file2 (MP4 5308 KB)

Supplementary file3 (MP4 5210 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cai, J., Ma, K. et al. In Situ Reconfiguration of Assembling Pattern for Modular Continuum Robots. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00523-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00523-5

Keywords

Navigation