Skip to main content
Log in

Design of a Bio-inspired Extensible Continuum Manipulator with Variable Stiffness

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk. Specifically, the manipulator mimics the conoid profile of the elephant trunk, which helps to enhance its strength. The design features two concentric parts: inner pneumatically actuated bellows and an outer tendon-driven helical spring. The tendons control the omnidirectional bending of the manipulator, while the fusion of the pneumatic bellows with the tendon-driven spring results in an antagonistic actuation mechanism that provides the manipulator with variable stiffness and extensibility. This paper presents a new design for extensible manipulator and analyzes its stiffness and motion characteristics. Experimental results are consistent with theoretical analysis, thereby demonstrating the validity of the theoretical approach and the versatile practical mechanical properties of the continuum manipulator. The impressive extensibility and variable stiffness of the manipulator were further demonstrated by performing a pin-hole assembly task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467–475.

    Article  Google Scholar 

  2. Cianchetti, M., Laschi, C., Menciassi, A., & Dario, P. (2018). Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), 143–153.

    Article  Google Scholar 

  3. Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: A bioinspired evolution in robotics. Trends in Biotechnology, 31(5), 287–294.

    Article  Google Scholar 

  4. Coyle, S., Majidi, C., LeDuc, P., & Hsia, K. J. (2018). Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mechanics Letters, 22, 51–59.

    Article  Google Scholar 

  5. Burgner-Kahrs, J., Rucker, D. C., & Choset, H. (2015). Continuum robots for medical applications: A survey. IEEE Transactions on Robotics, 31(6), 1261–1280.

    Article  Google Scholar 

  6. Sui, X., Zheng, T. J., Qi, J., Yang, Z. Y., Zhao, N., Zhao, J., Cai, H. G., & Zhu, Y. H. (2022). Task-oriented hierarchical control of modular soft robots with external vision guidance. Journal of Bionic Engineering, 19, 657–667.

    Article  Google Scholar 

  7. Chen, Y. X., Hu, B. B., Zou, J. K., Zhang, W., Wang, D. S., & Jin, G. Q. (2020). Design and fabrication of a multi-motion mode soft crawling robot. Journal of Bionic Engineering, 17, 932–943.

    Article  Google Scholar 

  8. Festo. BionicMotionRobot. https://www.festo.com/group/en/cms/12747.htm. Accessed 7 Jul 2021.

  9. Bartow, A., Kapadia, A., & Walker, I. D. (2014). A contractor muscle based continuum trunk robot. International Journal of Systems Applications, Engineering & Development, 8, 198–206.

    Google Scholar 

  10. Hannan, M. W., & Walker, I. D. (2001). The “elephant trunk” manipulator, design and implementation. 2001 IEEE/ASME international conference on advanced intelligent mechatronics, Como, Italy (pp. 14–19).

  11. Manti, M., Cacucciolo, V., & Cianchetti, M. (2016). Stiffening in soft robotics: A review of the state of the art. IEEE Robotics & Automation Magazine, 23(3), 93–106.

    Article  Google Scholar 

  12. Al-Fahaam, H., Nefti-Meziani, S., Theodoridis, T., & Davis, S. (2018). The design and mathematical model of a novel variable stiffness extensor-contractor pneumatic artificial muscle. Soft Robotics, 5(5), 576–591.

    Article  Google Scholar 

  13. Giannaccini, M. E., Xiang, C., Atyabi, A., Theodoridis, T., Nefti-Meziani, S., & Davis, S. (2018). Novel design of a soft lightweight pneumatic continuum robot arm with decoupled variable stiffness and positioning. Soft Robotics, 5(1), 54–70.

    Article  Google Scholar 

  14. Stilli, A., Maghooa, F., Wurdemann, H., & Althoefer, K. (2014). A new bio-inspired, antagonistically actuated and stiffness controllable manipulator. In Workshop on computer/robot assisted surgery.

  15. Stilli, A., Wurdemann, H. A., & Althoefer, K. (2014). Shrinkable, stiffness-controllable soft manipulator based on a bio-inspired antagonistic actuation principle. In 2014 IEEE/RSJ international conference on intelligent robots and systems, Chicago, USA (pp. 2476–2481).

  16. Maghooa, F., Stilli, A., Noh, Y., Althoefer, K., & Wurdemann, H. A. (2015). Tendon and pressure actuation for a bio-inspired manipulator based on an antagonistic principle. 2015 IEEE international conference on robotics and automation (ICRA), Seattle, USA (pp. 2556–2561).

  17. McMahan, W., Jones, B. A., & Walker, I. D. (2005). Design and implementation of a multi-section continuum robot: Air-octor. 2005 IEEE/RSJ international conference on intelligent robots and systems, Edmonton, Canada (pp. 2578–2585).

  18. Cheng, N. G., Lobovsky, M. B., Keating, S. J., Setapen, A. M., Gero, K. I., Hosoi, A. E., & Iagnemma, K. D. (2012). Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. 2012 IEEE international conference on robotics and automation, Saint Paul, USA (pp. 4328–4333).

  19. De Falco, I., Cianchetti, M., & Menciassi, A. (2017). A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspiration & Biomimetics, 12(5), 056008.

    Article  Google Scholar 

  20. Kim, Y. J., Cheng, S., Kim, S., & Iagnemma, K. (2013). A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Transactions on Robotics, 29(4), 1031–1042.

    Article  Google Scholar 

  21. Santiago, J. L. C., Godage, I. S., Gonthina, P., & Walker, I. D. (2016). Soft robots and kangaroo tails: modulating compliance in continuum structures through mechanical layer jamming. Soft Robotics, 3(2), 54–63.

    Article  Google Scholar 

  22. Chen, X., Guo, Y., Duanmu, D., Zhou, J., Zhang, W., & Wang, Z. (2019). Design and modeling of an extensible soft robotic arm. IEEE Robotics and Automation Letters, 4(4), 4208–4215.

    Article  Google Scholar 

  23. Gong, Z., Fang, X., Chen, X., Cheng, J., Xie, Z., Liu, J., Chen, B., Yang, H., Kong, S., Hao, Y., Wang, T., Yu, J., & Wen, L. (2021). A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments. The International Journal of Robotics Research, 40(1), 449–469.

    Article  Google Scholar 

  24. Simaan, N., Xu, K., Wei, W., Kapoor, A., Kazanzides, P., Taylor, R., & Flint, P. (2009). Design and integration of a telerobotic system for minimally invasive surgery of the throat. The International Journal of Robotics Research, 28(9), 1134–1153.

    Article  Google Scholar 

  25. Yang, C., Geng, S., Walker, I., Branson, D. T., Liu, J., Dai, J. S., & Kang, R. (2020). Geometric constraint-based modeling and analysis of a novel continuum robot with Shape Memory Alloy initiated variable stiffness. The International Journal of Robotics Research, 39(14), 1620–1634.

    Article  Google Scholar 

  26. Amanov, E., Nguyen, T. D., & Burgner-Kahrs, J. (2021). Tendon-driven continuum robots with extensible sections-A model-based evaluation of path-following motions. The International Journal of Robotics Research, 40(1), 7–23.

    Article  Google Scholar 

  27. Zhang, Y., Sun, H., Jia, Y., Huang, D., Li, R., Mao, Z., Hu, Y., Chen, J., Kuang, S., Tang, J., & Xiao, X. (2018). A continuum robot with contractible and extensible length for neurosurgery. 2018 IEEE 14th international conference on control and automation (ICCA), Anchorage, USA (pp. 1150–1155).

  28. Hu, Y., Zhang, L., Li, W., & Yang, G. Z. (2019). Design and fabrication of a 3-D printed metallic flexible joint for snake-like surgical robot. IEEE Robotics and Automation Letters, 4(2), 1557–1563.

    Article  Google Scholar 

  29. Kim, Y., Cheng, S. S., Diakite, M., Gullapalli, R. P., Simard, J. M., & Desai, J. P. (2017). Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot. IEEE Transactions on Robotics, 33(6), 1386–1397.

    Article  Google Scholar 

  30. Yang, J., Pitarch, E. P., Potratz, J., Beck, S., & Abdel-Malek, K. (2006). Synthesis and analysis of a flexible elephant trunk robot. Advanced Robotics, 20(6), 631–659.

    Article  Google Scholar 

  31. Velasquez, C. A., King, H. H., Hannaford, B., & Yoon, W. J. (2012). Development of a flexible imaging probe integrated to a surgical telerobot system: Preliminary remote control test and probe design. 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Rome, Italy (pp. 894–898).

  32. Choi, D. G., Yi, B. J., & Kim, W. K. (2007). Design of a spring backbone micro endoscope. 2007 IEEE/RSJ international conference on intelligent robots and systems, San Diego, USA (pp. 1815–1821).

  33. Frazelle, C. G., Kapadia, A., & Walker, I. (2018). Developing a kinematically similar master device for extensible continuum robot manipulators. Journal of Mechanisms and Robotics, 10(2), 025005.

    Article  Google Scholar 

  34. Kang, R., Guo, Y., Chen, L., Branson, D. T., & Dai, J. S. (2016). Design of a pneumatic muscle based continuum robot with embedded tendons. IEEE/ASME Transactions on Mechatronics, 22(2), 751–761.

    Article  Google Scholar 

  35. Immega, G., & Antonelli, K. (1995). The KSI tentacle manipulator. In Proceedings of 1995 IEEE international conference on robotics and automation, Nagoya, Japan (pp 3149–3154).

  36. Jones, B. A., McMahan, W., & Walker, I. (2004). Design and analysis of a novel pneumatic manipulator. IFAC Proceedings Volumes, 37(14), 687–692.

    Article  Google Scholar 

  37. Oliver-Butler, K., Till, J., & Rucker, C. (2019). Continuum robot stiffness under external loads and prescribed tendon displacements. IEEE Transactions on Robotics, 35(2), 403–419.

    Article  Google Scholar 

  38. Melingui, A., Lakhal, O., Daachi, B., Mbede, J. B., & Merzouki, R. (2015). Adaptive neural network control of a compact bionic handling arm. IEEE/ASME Transactions on Mechatronics, 20(6), 2862–2875.

    Article  Google Scholar 

  39. Lee, K. H., Fu, D. K., Leong, M. C., Chow, M., Fu, H. C., Althoefer, K., et al. (2017). Nonparametric online learning control for soft continuum robot: An enabling technique for effective endoscopic navigation. Soft Robotics, 4(4), 324–337.

    Article  Google Scholar 

  40. Fang, G., Chow, M. C., Ho, J. D., He, Z., Wang, K., Ng, T. C., et al. (2021). Soft robotic manipulator for intraoperative MRI-guided transoral laser microsurgery. Science Robotics, 6(57), eabg5575.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFB1305400), the Major Research Plan of the National Natural Science Foundation of China (No. 92048301), the National Natural Science Foundation of China (No. 52025054), and the Joint Research Fund between the National Natural Science Foundation of China(NSFC) and Shen Zhen(No. U1713201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubin Liu or Yanhe Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, D., Zhao, S., Wang, T. et al. Design of a Bio-inspired Extensible Continuum Manipulator with Variable Stiffness. J Bionic Eng (2022). https://doi.org/10.1007/s42235-022-00213-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-022-00213-0

Keywords

Navigation