Skip to main content
Log in

Electrospun Aloe Vera Extract Loaded Polycaprolactone Scaffold for Biomedical Applications: A Promising Candidate for Corneal Stromal Regeneration

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Corneal diseases, the second leading cause of global vision loss affecting over 10.5 million people, underscores the unmet demand for corneal tissue replacements. Given the scarcity of fresh donor corneas and the associated risks of immune rejection, corneal tissue engineering becomes imperative. Developing nanofibrous scaffolds that mimic the natural corneal structure is crucial for creating transparent and mechanically robust corneal equivalents in tissue engineering. Herein, Aloe Vera Extract (AVE)/Polycaprolactone (PCL) nanofibrous scaffolds were primed using electrospinning. The electrospun AVE/PCL fibers exhibit a smooth, bead-free morphology with a mean diameter of approximately 340 ± 95 nm and appropriate light transparency. Mechanical measurements reveal Young’s modulus and ultimate tensile strength values of around 3.34 MPa and 4.58 MPa, respectively, within the range of stromal tissue. In addition, cell viability of AVE/PCL fibers was measured against Human Stromal Keratocyte Cells (HSKCs), and improved cell viability was observed. The cell-fiber interactions were investigated using scanning electron microscopy. In conclusion, the incorporation of Aloe Vera Extract enhances the mechanical, optical, hydrophilic, and biological properties of PCL fibers, positioning PCL/AVE fiber scaffolds as promising candidates for corneal stromal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw data from this study are not publicly available. All data will be securely stored and can be made available for verification upon request. For inquiries, please contact Narsimha Mamidi at narsimhachem06@gmail.com.

References

  1. Salehi, A. O. M., Keshel, S. H., Sefat, F., & Tayebi, L. (2021). Use of polycaprolactone in corneal tissue engineering: A review. Materials Today Communications, 27, 1–10. https://doi.org/10.1016/j.mtcomm.2021.102402.

    Article  Google Scholar 

  2. Chun, Y. H., Park, S. K., Kim, E. J., Lee, H. J., Kim, H., Koh, W. G., Cunha, G. F., Myung, D., & Na, K. S. (2021). In vivo biocompatibility evaluation of in situ-forming polyethylene glycol-collagen hydrogels in corneal defects. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-03270-3.

    Article  Google Scholar 

  3. Patel, G., Na, K. S., Lee, H. J., & Koh, W. G. (2021). Electrospun fibers for corneal regeneration. Current Ophthalmology Reports, 9, 146–157. https://doi.org/10.1007/s40135-021-00279-9.

    Article  Google Scholar 

  4. Fernandes-Cunha, G. M., Chen, K. M., Chen, F., Le, P., Han, J. H., Mahajan, L. A., Lee, H. J., Na, K. S., & Myung, D. (2020). In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-72978-5.

    Article  Google Scholar 

  5. Salehi, A. O. M., Nourbakhsh, M. S., Rafienia, M., Baradaran-Rafii, A., & Keshel, S. H. (2020). Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. International Journal of Biological Macromolecules, 161, 377–388. https://doi.org/10.1016/j.ijbiomac.2020.06.045.

    Article  Google Scholar 

  6. Kong, B., & Mi, S. (2016). Electrospun scaffolds for corneal tissue engineering: A review. Materials, 9(8), 1–20. https://doi.org/10.3390/ma9080614.

    Article  Google Scholar 

  7. Carter, K., Lee, H. J., Na, K. S., Fernandes-Cunha, G. M., Blanco, I. J., Djalilian, A., & Myung, D. (2019). Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomaterialia, 99, 247–257. https://doi.org/10.1016/j.actbio.2019.09.022.

    Article  Google Scholar 

  8. Fernandes-Cunha, G. M., Na, K. S., Putra, I., Lee, H. J., Hull, S., Cheng, Y. C., Blanco, I. J., Eslani, M., Djalilian, A. R., & Myung, D. (2019). Corneal wound healing effects of mesenchymal stem cell secretome delivered within a viscoelastic gel carrier. Stem Cells Translational Medicine, 8(5), 478–489. https://doi.org/10.1002/sctm.18-0178.

    Article  Google Scholar 

  9. Lee, H. J., Fernandes-Cunha, G. M., Na, K. S., Hull, S. M., & Myung, D. (2018). Bio‐orthogonally crosslinked, in situ forming corneal stromal tissue substitute. Advanced Healthcare Materials, 7(19), 1–13. https://doi.org/10.1002/adhm.201800560.

    Article  Google Scholar 

  10. Ahearne, M., Fernández-Pérez, J., Masterton, S., Madden, P. W., & Bhattacharjee, P. (2020). Designing scaffolds for corneal regeneration. Advanced Functional Materials, 30(44), 1–24. https://doi.org/10.1002/adfm.201908996.

    Article  Google Scholar 

  11. Wu, Z., Kong, B., Liu, R., Sun, W., & Mi, S. (2018). Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold. Nanomaterials, 8(2), 1–16. https://doi.org/10.3390/nano8020124.

    Article  Google Scholar 

  12. Rogers, G. F. C., Putra, I., Lee, H. J., Cheng, Y. C., Eslani, M., Djalilian, A. R., & Myung, D. (2018). Synergistic corneal wound healing effects of human mesenchymal stem cell secreted factors and hyaluronic acid-based viscoelastic gel. Investigative Ophthalmology & Visual Science, 59(9), 2989–2991. https://doi.org/10.1002/sctm.18-0178.

    Article  Google Scholar 

  13. Isaacson, A., Swioklo, S., & Connon, C. J. (2018). 3D bioprinting of a corneal stroma equivalent. Experimental Eye Research, 173, 188–193. https://doi.org/10.1016/j.exer.2018.05.010.

    Article  Google Scholar 

  14. Salehi, A. O. M., Heidari-Keshel, S., Poursamar, S. A., Zarrabi, A., Sefat, F., Mamidi, N., Behrouz, M. J., & Rafienia, M. (2022). Bioprinted membranes for corneal tissue engineering: A review. Pharmaceutics, 14(12), 1–17. https://doi.org/10.3390/pharmaceutics14122797.

    Article  Google Scholar 

  15. Ortega, Í., Ryan, A. J., Deshpande, P., MacNeil, S., & Claeyssens, F. (2013). Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomaterialia, 9(3), 5511–5520. https://doi.org/10.1016/j.actbio.2012.10.039.

    Article  Google Scholar 

  16. Yang, J., Yamato, M., Nishida, K., Ohki, T., Kanzaki, M., Sekine, H., Shimizu, T., & Okano, T. (2006). Cell delivery in regenerative medicine: The cell sheet engineering approach. Journal of Controlled Release, 116(2), 193–203. https://doi.org/10.1016/j.jconrel.2006.06.022.

    Article  Google Scholar 

  17. Proulx, S., Uwamaliya, J. D. A., Carrier, P., Deschambeault, A., Audet, C., Giasson, C. J., Guérin, S. L., Auger, F. A., & Germain, L. (2010). Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Molecular Vision, 16, 2192–2201.

    Google Scholar 

  18. Lee, S. W., Lee, H. J., Choi, J. H., Koh, W. G., Myoung, J. M., Hur, J. H., Park, J. J., Cho, J. H., & Jeong, U. (2010). Periodic array of polyelectrolyte-gated organic transistors from electrospun poly (3-hexylthiophene) nanofibers. Nano Letters, 10(1), 347–351. https://doi.org/10.1021/nl903722z.

    Article  Google Scholar 

  19. Lee, Y., Lee, H. J., Son, K. J., & Koh, W. G. (2011). Fabrication of hydrogel-micropatterned nanofibers for highly sensitive microarray-based immunosensors having additional enzyme-based sensing capability. Journal of Materials Chemistry, 21(12), 4476–4483. https://doi.org/10.1039/C0JM03881D.

    Article  Google Scholar 

  20. Hosseinian, H., Jimenez-Moreno, M., Sher, M., Rodriguez-Garcia, A., Martinez-Chapa, S. O., & Hosseini, S. (2023). An origami-based technique for simple, effective and inexpensive fabrication of highly aligned far-field electrospun fibers. Scientific Reports, 13(1), 1–15. https://doi.org/10.1038/s41598-023-34015-z.

    Article  Google Scholar 

  21. Mamidi, N., García, R. G., Martínez, J. D. H., Briones, C. M., Martinez Ramos, A. M., Tamez, M. F. L., Del Valle, B. G., & Segura, F. J. M. (2022). Recent advances in designing fibrous biomaterials for the domain of biomedical, clinical, and environmental applications. ACS Biomaterials Science & Engineering, 8(9), 3690–3716. https://doi.org/10.1021/acsbiomaterials.2c00786.

    Article  Google Scholar 

  22. Mamidi, N., Zuníga, A. E., & Villela-Castrejón, J. (2020). Engineering and evaluation of forcespun functionalized carbon nano-onions reinforced poly (ε-caprolactone) composite nanofibers for pH-responsive drug release. Materials Science and Engineering: C, 112, 1–9. https://doi.org/10.1016/j.msec.2020.110928.

    Article  Google Scholar 

  23. Mamidi, N., Delgadillo, R. M. V., & González-Ortiz, A. (2021). Engineering of carbon nano-onion bioconjugates for biomedical applications. Materials Science and Engineering: C, 120, 1–11. https://doi.org/10.1016/j.msec.2020.111698.

    Article  Google Scholar 

  24. García-Valderrama, E. J., Mamidi, N., Antunes-Ricardo, M., Gutiérrez-Uribe, J. A., Angel-Sanchez, D., K., & Elías-Zúñiga, A. (2022). Engineering and evaluation of forcespun gelatin nanofibers as an isorhamnetin glycosides delivery system. Pharmaceutics, 14(6), 1–17. https://doi.org/10.3390/pharmaceutics14061116.

    Article  Google Scholar 

  25. Ye, J., Shi, X., Chen, X., Xie, J., Wang, C., Yao, K., Gao, C., & Gou, Z. (2014). Chitosan-modified, collagen-based biomimetic nanofibrous membranes as selective cell adhering wound dressings in the treatment of chemically burned corneas. Journal of Materials Chemistry B, 2(27), 4226–4236. https://doi.org/10.1039/C3TB21845G.

    Article  Google Scholar 

  26. Tonsomboon, K., & Oyen, M. L. (2013). Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. Journal of the Mechanical Behavior of Biomedical Materials, 21, 185–194. https://doi.org/10.1016/j.jmbbm.2013.03.001.

    Article  Google Scholar 

  27. Bigham, A., Salehi, A. O. M., Rafienia, M., Salamat, M. R., Rahmati, S., Raucci, M. G., & Ambrosio, L. (2021). Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: A multifunctional platform towards bone tissue regeneration. Materials Science and Engineering: C, 127, 1–16. https://doi.org/10.1016/j.msec.2021.112242.

    Article  Google Scholar 

  28. Salehi, S., Bahners, T., Gutmann, J. S., Gao, S. L., Mäder, E., & Fuchsluger, T. A. (2014). Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. Rsc Advances, 4(33), 16951–16957. https://doi.org/10.1039/C4RA01237B.

    Article  Google Scholar 

  29. Ghezzi, C. E., Rnjak-Kovacina, J., & Kaplan, D. L. (2015). Corneal tissue engineering: Recent advances and future perspectives. Tissue Engineering Part B: Reviews, 21(3), 278–287. https://doi.org/10.1089/ten.teb.2014.0397.

    Article  Google Scholar 

  30. Kong, B., Sun, W., Chen, G., Tang, S., Li, M., Shao, Z., & Mi, S. (2017). Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-01072-0.

    Article  Google Scholar 

  31. Baker, S. C., Rohman, G., Southgate, J., & Cameron, N. R. (2009). The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials, 30(7), 1321–1328. https://doi.org/10.1016/j.biomaterials.2008.11.033.

    Article  Google Scholar 

  32. Kruse, M., Walter, P., Bauer, B., Rütten, S., Schaefer, K., Plange, N., Gries, T., Jockenhoevel, S., & Fuest, M. (2018). Electro-spun membranes as scaffolds for human corneal endothelial cells. Current Eye Research, 43(1), 1–11. https://doi.org/10.1080/02713683.2017.1377258.

    Article  Google Scholar 

  33. Mohamed, R. M., & Yusoh, K. (2016). A review on the recent research of polycaprolactone (PCL). Advanced Materials Research, 1134, 249–255. https://doi.org/10.4028/www.scientific.net/AMR.1134.249.

    Article  Google Scholar 

  34. Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2018). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science Polymer Edition, 29(7–9), 863–893. https://doi.org/10.1080/09205063.2017.1394711.

    Article  Google Scholar 

  35. Abedalwafa, M., Wang, F., Wang, L., & Li, C. (2013). Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review. Reviews on Advanced Materials Science, 34(2), 123–140.

    Google Scholar 

  36. Luo, K., Wang, L., Chen, X., Zeng, X., Zhou, S., Zhang, P., & Li, J. (2022). Biocompatible poly (ε-caprolactone)-based shape-memory polyurethane composite scaffold with bone-induced activity. Journal of Bionic Engineering, 19, 167–178. https://doi.org/10.1007/s42235-021-00125-5.

    Article  Google Scholar 

  37. Momeni, M., Amini, K., Heidari, A., & Khodaei, M. (2022). Evaluation the properties of polycaprolactone/fluorapatite nano-biocomposite. Journal of Bionic Engineering, 19(1), 179–187. https://doi.org/10.1007/s42235-021-00123-7.

    Article  Google Scholar 

  38. Kim, D. K., Sim, B. R., & Khang, G. (2016). Nature-derived aloe vera gel blended silk fibroin film scaffolds for cornea endothelial cell regeneration and transplantation. ACS Applied Materials & Interfaces, 8(24), 15160–15168. https://doi.org/10.1021/acsami.6b04901.

    Article  Google Scholar 

  39. Salehi, A. O. M., Keshel, S. H., Rafienia, M., Nourbakhsh, M. S., & Baradaran-Rafii, A. (2022). Promoting keratocyte stem like cell proliferation and differentiation by aligned polycaprolactone-silk fibroin fibers containing Aloe vera. Biomaterials Advances, 137, 1–13. https://doi.org/10.1016/j.bioadv.2022.212840.

    Article  Google Scholar 

  40. Ceravolo, I., Mannino, F., Irrera, N., Squadrito, F., Altavilla, D., Ceravolo, G., Pallio, G., & Minutoli, L. (2021). Health potential of aloe vera against oxidative stress induced corneal damage: An in vitro study. Antioxidants, 10(2), 1–13. https://doi.org/10.3390/antiox10020318.

    Article  Google Scholar 

  41. Moghadam, M. R., Jafarinasab, M. R., Yousefi, Z., Moghaddam, A. S., Memarzadeh, H., & Kanavi, M. R. (2020). Aloe vera gel-derived eye drops for alkaline corneal injury in a rabbit model. Journal of Ophthalmic & Vision Research, 15(1), 7–15. https://doi.org/10.18502/jovr.v15i1.5932.

    Article  Google Scholar 

  42. Atik, N., Sururi, M. A. R., & Kartiwa, R. A. (2021). Comparison of TGF-β1 in corneal laceration with or without Aloe vera gel treatment. Journal of Advanced Pharmacy Education & Research, 11(1), 120–124. https://doi.org/10.51847/Jq2Ck35.

    Article  Google Scholar 

  43. Rahman, S., Carter, P., & Bhattarai, N. (2017). Aloe vera for tissue engineering applications. Journal of Functional Biomaterials, 8(1), 3–17. https://doi.org/10.3390/jfb8010006.

    Article  Google Scholar 

  44. Carter, P., Rahman, S. M., & Bhattarai, N. (2016). Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. Journal of Biomaterials Science Polymer Edition, 27(7), 692–708. https://doi.org/10.1080/09205063.2016.1152857.

    Article  Google Scholar 

  45. Sutton, G., You, J., Chen, Z., Cooper, S., Crook, J., Hodge, C., & Wallace, G. (2018). Biomaterials for corneal bioengineering. Biomedical Materials, 13(3), 1–10. https://doi.org/10.1088/1748-605X/aa92d2.

    Article  Google Scholar 

Download references

Acknowledgements

All the authors are grateful to Tecnologico de Monterrey, Isfahan University of Medical Sciences, Shahid Beheshti University of Medical Science, and the University of South Florida.

Funding

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) and Tecnológico de Monterrey. A.O.M.S acknowledges funding received by CONACYT in the form of a Graduate Studies Scholarship. Dr. Narsimha Mamidi acknowledges WiscNano, School of Pharmacy, University of Wisconsin-Madison, WI, USA.

Author information

Authors and Affiliations

Authors

Contributions

A.O.M.S.: Conceptualization, Methodology, Investigation, Writing, Original Draft, Validation, Review & Editing. S.H.K.: Conceptualization, Validation, Writing, Review & Editing. M.R.: Conceptualization, Writing, Review & Editing. N.M.: Conceptualization, Validation, Supervision, Writing, Review & Editing. A.B-R.: Conceptualization, Supervision, Writing, Review & Editing.

Corresponding authors

Correspondence to Mohammad Rafienia, Narsimha Mamidi or Saeed Heidari Keshel.

Ethics declarations

Declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, A.O.M., Rafienia, M., Mamidi, N. et al. Electrospun Aloe Vera Extract Loaded Polycaprolactone Scaffold for Biomedical Applications: A Promising Candidate for Corneal Stromal Regeneration. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00520-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00520-8

Keywords

Navigation