Skip to main content
Log in

Fabrication of Bio-inspired Superamphiphobic Aluminum Alloy Surface with Oil-triggered Wenzel-Slippery Transition via Femtosecond Laser

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Surface-tension-confined microfluidic devices are platforms for manipulating 2D droplets based on patterned surfaces with special wettability. They have great potential for various applications, but are still in the early stages of development and face some challenges that need to be addressed. This study, inspired by the Wenzel and slippery transition of rose petal, develops a Patterned Oil-triggered Wenzel-slippery Surface (POWS) to examine the microfluidic devices. A laser-chemical composite method is established to fabricate POWSs, which take rose-petal-like microstructures as wettability pattern and a superamphiphobic surface as the background. The prepared POWSs switched between high adhesion superhydrophobic state and the slippery liquid-infused surface state through adding or removing the lubricant oil. In the high adhesion superhydrophobic state, the droplets can be sticked on the surface. In the slippery liquid-infused state, the droplet can slide along the wettability pattern as the designed route. A POWS-based droplet reactor is further constructed, on which, the droplets can be remotely controlled to move, mix and react, as required. Such a POWS, which manipulates droplets with surface tension controlled by the switchable wettability patterns, would be a promising candidate to construct multiple surface-tension-confined microfluidic devices. In addition, the fabrication technique and design principle proposed here may aid the development of various field related to the bio-inspired surfaces, such as water collection, desalination and high throughput analysis, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available due to some restrictions and are available from corresponding author upon reasonable request.

References

  1. Feng, W., Ueda, E., & Levkin, P. A. (2018). Droplet microarrays: From surface patterning to high-throughput applications. Advanced Materials, 30, 1706111. https://doi.org/10.1002/adma.201706111.

    Article  Google Scholar 

  2. Lifka, S., Hischen, F., Heitz, J., & Baumgartner, W. (2021). An optimised surface structure for passive, unidirectional fluid transport bioinspired by true bugs. Journal of Bionic Engineering, 18, 375–386. https://doi.org/10.1007/s42235-021-00076-x.

    Article  Google Scholar 

  3. Hou, L. L., Liu, X. F., Ge, X. R., Hu, R. J., Cui, Z. M., Wang, N., & Zhao, Y. (2023). Designing of anisotropic gradient surfaces for directional liquid transport: Fundamentals, construction, and applications. The Innovation, 4, 100508. https://doi.org/10.1016/j.xinn.2023.100508.

    Article  Google Scholar 

  4. Zhan, H., Xia, Y., Liu, Y., Sun, H., Ge, W., Feng, S., & Liu, Y. (2023). Sustainable droplet manipulation on ultrafast lubricant self-mediating photothermal slippery surfaces. Advanced Functional Materials, 33, 2211317. https://doi.org/10.1002/adfm.202211317

  5. Jiao, L., Wu, Y., Hu, Y., Guo, Q., Wu, H., Yu, H., Deng, L., Li, D., & Li, L. (2023). Mosaic patterned surfaces toward generating hardly-volatile capsular droplet arrays for high‐precision droplet‐based storage and detection. Small (Weinheim An Der Bergstrasse, Germany), 19, 2206274. https://doi.org/10.1002/smll.202206274

  6. Zhang, Y., Gan, Y., Zhang, L., & Chen, H. (2020). Surface-tension-confined channel with biomimetic microstructures for unidirectional liquid spreading. Micromachines, 11, 978. https://doi.org/10.3390/mi11110978.

    Article  Google Scholar 

  7. You, I., Lee, T. G., Nam, Y. S., & Lee, H. (2014). Fabrication of a micro-omnifluidic device by omniphilic/omniphobic patterning on nanostructured surfaces. Acs Nano, 8, 9016–9024. https://doi.org/10.1021/nn502226v.

    Article  Google Scholar 

  8. Zhang, Q., Wei, W., Wang, P., Zuo, L., Li, L., Xu, J., Xi, X., Gao, X., Ma, G., & Xie, H. (2017). Biomimetic magnetosomes as versatile artificial antigen-presenting cells to potentiate T-Cell-based anticancer therapy. Acs Nano, 11, 10724–10732. https://doi.org/10.1021/acsnano.7b04955.

    Article  Google Scholar 

  9. Efremov, A. N., Stanganello, E., Welle, A., Scholpp, S., & Levkin, A. P. (2013). Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell-cell communication. Biomaterials, 34, 1757–1763. https://doi.org/10.1016/j.biomaterials.2012.11.034.

    Article  Google Scholar 

  10. Lai, Y., Pan, F., Xu, C., Fuchs, H., & Chi, L. (2013). In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Advanced Materials, 25, 1682–1686. https://doi.org/10.1002/adma.201370077.

    Article  Google Scholar 

  11. Khoo, H. S., & Tseng, F. G. (2009). Spontaneous high-speed transport of subnanoliter water droplet on gradient nanotextured surfaces. Applied Physics Letters, 95, 063108. https://doi.org/10.1063/1.3197574.

    Article  Google Scholar 

  12. Ghosh, A., Ganguly, R., Schutzius, T. M., & Megaridis, C. M. (2014). Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms. Lab on a Chip, 14, 1538–1550. https://doi.org/10.1039/c3lc51406d.

    Article  Google Scholar 

  13. Brinkmann, M., R. Lipowsky. (2002). Wetting morphologies on substrates with striped surface domains. Journal of Applied Physics, 92, 4296–4306. https://doi.org/10.1063/1.1506003.

  14. Rosenfeld, A., Brehm, M., Welle, A., Trouillet, V., Heissler, S., Benz, M., & Levkin, P. A. (2019). Solid-phase combinatorial synthesis using microarrays of microcompartments with light-induced on-chip cell screening. Materials Today Bio, 3, 100022. https://doi.org/10.1016/j.mtbio.2019.100022.

    Article  Google Scholar 

  15. Piret, G., Galopin, E., Coffinier, Y., Boukherroub, R., Legrand, D., & Slomianny, C. (2011). Culture of mammalian cells on patterned superhydrophilic/superhydrophobic silicon nanowire arrays. Soft Matter, 7, 8642. https://doi.org/10.1039/c1sm05838j.

    Article  Google Scholar 

  16. Liu, H., Yang, Z., Meng, L., Sun, Y., Wang, J., Yang, L., Liu, J., & Tian, Z. (2014). Three-dimensional and time-ordered SERS hotspot matrix. Journal of the American Chemical Society, 136, 5332–5341. https://doi.org/10.1021/ja501951v.

    Article  Google Scholar 

  17. Tseng, S. F., Hsiao, W. T., Chen, M. F., Huang, K., Hsiao, C., Lin, S. Y., & Chou, Y. S., C. P (2010). Surface wettability of silicon substrates enhanced by laser ablation. Applied Physics A, 101, 303–308. https://doi.org/10.1007/s00339-010-5821-y.

    Article  Google Scholar 

  18. Küster, S., Pabst, K., Zenobi, M., & Dittrich, R., S (2015). Screening for protein phosphorylation using nanoscale reactions on microdroplet arrays. Angewandte Chemie International Edition, 54(5), 1671–1675. https://doi.org/10.1002/anie.201409440.

    Article  Google Scholar 

  19. Küster, S., Pabst, K., Jefimovs, M., Zenobi, K., & Dittrich, R., S (2014). High-resolution droplet-based fractionation of nano-LC separations onto microarrays for MALDI-MS analysis. Analytical Chemistry, 86, 4848–4855. https://doi.org/10.1021/ac4041982.

    Article  Google Scholar 

  20. Zhang, C. C., Wu, Z. Y., Zhang, X. M., Yue, Y. L., & Wang, J. (2018). Effect of feather elasticity of kingfisher wing on droplet impact dynamics. Journal of Bionic Engineering, 15, 731–740. https://doi.org/10.1007/s42235-018-0061-5.

    Article  Google Scholar 

  21. Chen, Y. L., Guo, L., Cai, N. N., Sun, W. C., Yan, Y. Y., Li, D. G., Wang, H., & Xuan, R. (2023). Evaporation characteristics and morphological evolutions of fuel droplets after hitting different wettability surfaces. Journal of Bionic Engineering, 20, 734–747. https://doi.org/10.1007/s42235-022-00293-y.

    Article  Google Scholar 

  22. Xie, H., & Huang, H. (2020). Gradient wetting transition from the wenzel to robust cassie-baxter states along nanopillared cicada wing and underlying mechanism. Journal of Bionic Engineering, 17, 1009–1018. https://doi.org/10.1007/s42235-020-0080-x.

    Article  Google Scholar 

  23. Song, Y., Yu, Z., Liu, Y., Dong, L., & Ma, H. (2021). A hierarchical conical array with controlled adhesion and drop bounce ability for reducing residual non-newtonian liquids. Journal of Bionic Engineering, 18(3), 637–648. https://doi.org/10.1007/s42235-021-0042-y.

    Article  Google Scholar 

  24. Parker, A., & Lawrence, R., C., R (2001). Water capture by a desert beetle. Nature, 414(6859), 33–34. https://doi.org/10.1038/35102108.

    Article  Google Scholar 

  25. Park, K. C., Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J. C., & Aizenberg, J. (2016). Condensation on slippery asymmetric bumps. Nature, 531, 78–82. https://doi.org/10.1038/nature16956.

    Article  Google Scholar 

  26. Bae, W. G., Kim, H. N., Kim, D., Park, S. H., Jeong, H. E., & Suh, K. Y. (2014). 25th anniversary article: Scalable multiscale patterned structures inspired by nature: The role of hierarchy. Advanced Materials, 26(5), 675–700. https://doi.org/10.1002/adma.201303412.

    Article  Google Scholar 

  27. Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir: The ACS Journal of Surfaces and Colloids, 8, 24. https://doi.org/10.1021/la703821h.

    Article  Google Scholar 

  28. Monojit, C., Justin, A. W., James, A., & Suresh, S., V, G (2019). Petal Effect: The wetting state of water on a rose petal. Advanced Materials Interfaces, 6(17), 1970110–1970110. https://doi.org/10.1002/admi.201970110.

    Article  Google Scholar 

  29. Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A., & Aizenberg, J. (2011). Bioinspired self-repairing slippery surfaces withpressure-stable omniphobicity. Nature, 477,(7365), 443–447. https://doi.org/10.1038/nature10447.

    Article  Google Scholar 

  30. Mistura, G., & Pierno, M. (2017). Drop mobility on chemically heterogeneous and lubricant-impregnated surfaces. Advances in Physics: X, 2, 591–607. https://doi.org/10.1080/23746149.2017.1336940.

    Article  Google Scholar 

  31. Sun, T., Wang, G., Feng, L., Liu, B. Q., Ma, Y. M., Jiang, L., & Zhu, D. B. (2004). Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie (International Ed. In English), 43, 357–360. https://doi.org/10.1002/anie.200352565.

    Article  Google Scholar 

  32. Gao, J., Liu, Y., Xu, H., Wang, Z., & Zhang, X. (2010). Biostructure-like surfaces with thermally responsive wettability prepared by temperature-induced phase separation micromolding. Langmuir the Acs Journal of Surfaces & Colloids, 26, 9673–9676. https://doi.org/10.1021/la100256b.

    Article  Google Scholar 

  33. Ichimura, K., & Nakagawa, S. K., Masaru (2000). Light-driven motion of liquids on a photoresponsive surface. Science, 288, 1624–1626. https://doi.org/10.1126/science.288.5471.1624.

    Article  Google Scholar 

  34. Kenanakis, G., Vernardou, D., & Katsarakis, N. (2012). Light-induced self-cleaning properties of ZnO nanowires grown at low temperatures. Applied Catalysis A General, 411, 7–14. https://doi.org/10.1016/j.apcata.2011.09.041.

    Article  Google Scholar 

  35. Wang, G., Gong, S., Li, Z., Dou, L., Cai, W., & Mao, Y. (2016). Evolution of stress concentration and energy release before rock bursts: Two case studies from Xingan Coal mine, Hegang, China. Rock Mechanics and Rock Engineering, 49, 3393–3401. https://doi.org/10.1007/s00603-015-0892-x.

    Article  Google Scholar 

  36. Tian, D., He, L., Zhang, N., Zheng, X., Dou, Y., Zhang, X., Guo, Z., & Jiang, L. (2016). Electric field and gradient microstructure for cooperative diving of directional motion of underwater oil droplets. Advanced Functional Materials, 26, 7986–7992. https://doi.org/10.1002/adfm.201601843.

    Article  Google Scholar 

  37. Lahann, J., Mitragotri, S., Tran, T. N., Kaido, H., & Langer, R. (2003). A reversibly switching surface. Science, 299, 371–374. https://doi.org/10.1126/science.1078933.

    Article  Google Scholar 

  38. Zhu, Y. Y., Dion, S. A., Xiao, R., & Wang, E. N. (2014). Real-time manipulation with magnetically tunable structures. Advanced Materials, 26, 6442–6446. https://doi.org/10.1002/adma.201401515.

    Article  Google Scholar 

  39. Peng, Y., He, Y., Yang, S., Jiang, L., Ben, S., Cao, M., Liu, K., & Li, K. (2015). Magnetically induced fog harvesting via flexible conical arrays. Advanced Functional Materials, 25, 5967–5971. https://doi.org/10.1002/adfm.201502745.

    Article  Google Scholar 

  40. Ge, P., Zhang, J., Liu, Y., Wang, S., Liu, W., Yu, N., Wu, Y., Zhang, J., & Yang, B. (2018). Smart anisotropic wetting surfaces with reversed pH-responsive wetting directions. Advanced Functional Materials, 28, 1802001. https://doi.org/10.1002/adfm.201802001.

    Article  Google Scholar 

  41. Yu, X., Wang, Z., Jiang, Y., Feng, S., & Xi, Z. (2005). Reversible pH-responsive surface: From superhydrophobicity to superhydrophilicity. Advanced Materials, 17, 1289–1293. https://doi.org/10.1002/adma.200401646.

    Article  Google Scholar 

  42. Cheng, Z., Zhang, D., Lv, T., Lai, H., Zhang, E., Kang, H., Wang, Y., Liu, P., Liu, Y., & Du, Y. (2018). Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Advanced Functional Materials, 28, 1705002. https://doi.org/10.1002/adfm.201705002.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Scientific and Technological Projects of Jilin Province (20220201026GX, 20220401083YY); Fundamental Research Funds for the Central Universities, Jilin University (2022-JCXK-15).

Funding

https://doi.org/10.13039/501100013061. Jilin Provincial Scientific and Technological Development Program 20220201026GX Prof Chunbao Liu. https://doi.org/10.13039/501100013061. Jilin Provincial Scientific and Technological Development Program 20220401083YY Prof Chunbao Liu. https://doi.org/10.13039/501100012226. Fundamental Research Funds for the Central Universities 2022-JCXK-15 Prof Chunbao Liu.

Author information

Authors and Affiliations

Authors

Contributions

W. Liu., L. Zhai., Z.Lin,. C. Liu.conceived the idea and supervised the study. W. Liu. and L. Zhai. carried out the experiments, numerical simulations and analyzed the experimental data. W. Liu., L. Zhai., and F. Guan. drafted the manuscript and all authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Lu Zhai or Zhaohua Lin.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Guan, F., Zhang, F. et al. Fabrication of Bio-inspired Superamphiphobic Aluminum Alloy Surface with Oil-triggered Wenzel-Slippery Transition via Femtosecond Laser. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00514-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00514-6

Keywords

Navigation