Skip to main content
Log in

Fabrications and Applications of Slippery Liquid-infused Porous Surfaces Inspired from Nature: A Review

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The slippery liquid-infused porous surfaces inspired by the microstructure of carnivorous nepenthes have aroused widespread attention, which show stable liquid repellency, glorious self-repairing powers and effective anti-fouling properties. The surfaces are manufactured via the infusion of lubricant oil into porous structures, a process which allows other fluids to slide off the interfaces readily. However, the practical applications of slippery liquid-infused surfaces are limited to the complicated preparation processes and poor oil lock ability. We aim to, in this review, present the fundamental theories of the slippery liquid-infused porous surface. Some typical natural examples are clarified while representative fabricating methods such as liquid flame spray, layer-by-layer assembly, lithography and so on are listed. The slippery surface can facilitate the manufacture of transparent and multi-functional slippery materials by means of straightforward procedures. The slippery liquid-infused porous surfaces were applied in hot water repellency, anti-fouling, ice-phobic, water condensation, control of underwater bubble transport and drag reduction. This article discusses all these issues along with emerging applications as well as future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiri M, Khonsari M M. On the thermodynamics of friction and wear — A review. Entropy, 2010, 12, 1021–1049.

    Article  Google Scholar 

  2. Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Advanced Materials, 2008, 20, 2842–2858.

    Article  Google Scholar 

  3. Xue X Y, Fu Y M, Wang Q, Xing L L, Zhang Y. Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible, smelling electronic skin. Advanced Functional Materials, 2016, 26, 3128–3138.

    Article  Google Scholar 

  4. Zhang Z Y, Zeng H M. Effects of thermal treatment on poly (ether ether ketone). Polymer, 1993, 34, 3648–3652.

    Article  Google Scholar 

  5. Spencer M S, Carnell P J H, Skinner W J. Mechanical removal of the diffusion layer in the electrolytic production of sodium dithionite. Chemical Communications, 1968, 7, 361–362.

    Google Scholar 

  6. Wang W, Salazar J, Vahabi H, Joshi-Imre A, Voit W E, Kota A K. Metamorphic superomniphobic surfaces. Advanced Materials, 2017, 29, 1700295.

    Article  Google Scholar 

  7. Wang W, Vahabi H, Movafaghi S, Kota A K. Superomniphobic surfaces with improved mechanical durability: Synergy of hierarchical texture and mechanical interlocking. Advanced Materials Interfaces, 2019, 1900538.

    Google Scholar 

  8. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202, 1–8.

    Article  Google Scholar 

  9. Feng F, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 2002, 14, 1857–1860.

    Article  Google Scholar 

  10. Quéré D. Wetting and roughness. Annual Review of Materials Research, 2008, 38, 71–99.

    Article  Google Scholar 

  11. Vogel N, Belisle R A, Hatton B, Wong T S, Aizenberg J. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications, 2013, 4, 2176.

    Article  Google Scholar 

  12. Li S H, Huang J Y, Chen Z, Chen G Q, Lai Y K. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 2017, 5, 31–55.

    Article  Google Scholar 

  13. Pan S J, Guo R, Xu W J. Durable superoleophobic fabric surfaces with counterintuitive superwettability for polar solvents. AIChE Journal, 2014, 60, 2752–2756.

    Article  Google Scholar 

  14. Meng X F, Wang Z B, Wang L L, Heng L P, Jiang L. A stable solid slippery surface with thermally assisted self-healing ability. Journal of Materials Chemistry A, 2018, 6, 16355–16360.

    Article  Google Scholar 

  15. Robbins M O, Krim J. Energy dissipation in interfacial friction. MRS Bulletin, 1998, 23, 23–26.

    Article  Google Scholar 

  16. Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28, 988–994.

    Article  Google Scholar 

  17. Cassie A B D, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40, 546–551.

    Article  Google Scholar 

  18. Wang S, Jiang L. Definition of superhydrophobic states. Advanced Materials, 2007, 19, 3423–3424.

    Article  Google Scholar 

  19. Jing X S, Guo Z G. Biomimetic super durable and stable surfaces with superhydrophobicity. Journal of Materials Chemistry A, 2018, 6, 16731–16768.

    Article  Google Scholar 

  20. Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477, 443–447.

    Article  Google Scholar 

  21. Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, Mckinley G H, Varanasi K K. Droplet mobility on lubricant-impregnated surfaces. Soft Matter, 2013, 9, 1772–1780.

    Article  Google Scholar 

  22. Shang L R, Yu Y R, Gao W, Wang Y T, Qu L L, Zhao Z, Chai R J, Zhao Y J. Bio-inspired anisotropic wettability surfaces from dynamic ferrofluid assembled templates. Advanced Functional Materials, 2018, 28, 1705802.

    Article  Google Scholar 

  23. Brown P S, Bhushan B. Liquid-impregnated porous polypropylene surfaces for liquid repellency. Journal of Colloid and Interface Science, 2017, 487, 437–443.

    Article  Google Scholar 

  24. Zhang P F, Zhang L W, Chen H W, Dong Z C, Zhang D Y. Surfaces inspired by the Nepenthes peristome for unidirectional liquid transport. Advanced Materials, 2017, 29, 1702995.

    Article  Google Scholar 

  25. Ellison A M. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology, 2006, 8, 740–747.

    Article  Google Scholar 

  26. Bauer U, Grafe T U, Federle W. Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana. Journal of Experimental Botany, 2011, 62, 3683–3692.

    Article  Google Scholar 

  27. Bi K D, Song X C, Wang Y J, Yang J K, Chen Y F. Anti-adhesion mechanisms of nepenthes waxy slippery zone surface. Journal of Mechanical Engineering, 2015, 51, 103–109.

    Article  Google Scholar 

  28. Wang L X, Zhou Q, Liu Q H. Dimensions of surface structures of slippery zone in nepenthes pitchers and bionic design of locust trapping plate. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42, 233–235.

    Article  Google Scholar 

  29. Bohn H F, Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences, 2004, 101, 14138–14143.

    Article  Google Scholar 

  30. Bauer U, Federle W. The insect-trapping rim of Nepenthes pitchers: Surface structure and function. Plant Signaling & Behavior, 2009, 4, 1019–1023.

    Article  Google Scholar 

  31. Bauer U, Bohn H G, Federle W. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar. Proceedings of the Royal Society B: Biological Sciences, 2007, 275, 259–265.

    Article  Google Scholar 

  32. Riedel M, Eichner A, Jetter R. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta, 2003, 218, 87–97.

    Article  Google Scholar 

  33. Gaume L, Perret P, Gorb E, Gorb S, Labat J J, Rowe N. How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Structure & Development, 2004, 33, 103–111.

    Article  Google Scholar 

  34. Gaume L, Forterre Y. A viscoelastic deadly fluid in carnivorous pitcher plants. PLOS ONE, 2007, 2, e1185.

    Article  Google Scholar 

  35. Bazile V, Moguédec G L, Marshall D J, Gaume L. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants. Annals of Botany, 2015, 115, 705–716.

    Article  Google Scholar 

  36. Owen Jr T P, Lennon K A, Santo M J, Anderson A N. Pathways for nutrient transport in the pitchers of the carnivorous plant Nepenthes alata. Annals of Botany, 1999, 84, 459–466.

    Article  Google Scholar 

  37. Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheidl I K. Endocytotic uptake of nutrients in carnivorous plants. The Plant Journal, 2012, 71, 303–313.

    Article  Google Scholar 

  38. Lin J, Ma M, Jing X. The preparation of Nepenthes Bio-inspired superhydrophobic surface primary microstructure. IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, 2017, 274, 012066.

    Article  Google Scholar 

  39. Wang P, Zhang D, Lu Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application. Colloids and Surfaces B: Biointerfaces, 2015, 136, 240–247.

    Article  Google Scholar 

  40. Manna U, Raman N, Welsh M A, Zayas-Gonzalez Y M, Blackwell H E, Palecek S P, Lynn D M. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: A controlled release approach. Advanced Functional Materials, 2016, 26, 3599–3611.

    Article  Google Scholar 

  41. Liu P, Zhang H D, He W Q, Li H L, Jiang J K, Liu M J, Sun H Y, He M L, Cui J X, Jiang L, Yao X. Development of “liquid-like” copolymer nanocoatings for reactive oil-repellent surface. ACS Nano, 2017, 11, 2248–2256.

    Article  Google Scholar 

  42. Wang L M, McCarthy T J. Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency. Angewandte Chemie International Edition, 2016, 55, 244–248.

    Article  Google Scholar 

  43. Wooh S, Vollmer D. Silicone brushes: Omniphobic surfaces with low sliding angles. Angewandte Chemie International Edition, 2016, 55, 6822–6824.

    Article  Google Scholar 

  44. Zhao H X, Sun Q Q, Deng X, Cui J X. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces. Advanced Materials, 2018, 30, 1802141.

    Article  Google Scholar 

  45. Li J J, Liu Y H, Luo J B, Liu P X, Zhang C H. Excellent lubricating behavior of Brasenia schreberi mucilage. Langmuir, 2012, 28, 7797–7802.

    Article  Google Scholar 

  46. Yang W, Sherman V R, Gludovatz B, Mackey M, Zimmermann E A, Chang E H, Schaible E, Qin Z, Buehler M J, Ritchie R O, Meyers M A. Protective role of Arapaima gigas fish scales: Structure and mechanical behavior. Acta Biomaterialia, 2014, 10, 3599–3614.

    Article  Google Scholar 

  47. Kramer M O. Boundary layer stabilization by distributed damping. Naval Engineers Journal, 1962, 74, 341–348.

    Article  Google Scholar 

  48. Carpenter P W, Davies C, Lucey A D. Hydrodynamics and compliant walls: Does the dolphin have a secret?. Current Science, 2000, 758–765.

    Google Scholar 

  49. Liu M J, Wang S T, Wei Z X, Song Y L, Jiang L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Advanced Materials, 2009, 21, 665–669.

    Article  Google Scholar 

  50. Bandyopadhyay P R, Hellum A M. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms. Scientific Reports, 2014, 4, 6650.

    Article  Google Scholar 

  51. Lang A W, Bradshaw M T, Smith J A, Wheelus J N, Motta P J, Habegeer M T, Hueter R E. Movable shark scales act as a passive dynamic micro-roughness to control flow separation. Bioinspiration & Biomimetics, 2014, 9, 036017.

    Article  Google Scholar 

  52. Lang A W, Motta P, Hidalgo P, Westcott M. Bristled shark skin: A microgeometry for boundary layer control?. Bioinspiration & Biomimetics, 2008, 3, 046005.

    Article  Google Scholar 

  53. Migler K B, Son Y, Qiao F, Flynn K. Extensional deformation, cohesive failure, and boundary conditions during sharkskin melt fracture. Journal of Rheology, 2002, 46, 383–400.

    Article  Google Scholar 

  54. Luo Y H, Liu Y F, Zhang D Y. Hydrodynamic testing of a biological sharkskin replica manufactured using the vacuum casting method. Surface Review and Letters, 2015, 22, 1550030.

    Article  Google Scholar 

  55. Luo Y H. Recent progress in exploring drag reduction mechanism of real sharkskin surface: A review. Journal of Mechanics in Medicine and Biology, 2015, 15, 1530002.

    Article  Google Scholar 

  56. Li F C, Cai W H, Zhang H N, Wang Y. Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations. Chinese Physics B, 2012, 21, 114701.

    Article  Google Scholar 

  57. Bhushan B. Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21, 2262–2296.

    Article  Google Scholar 

  58. Daniel T L. Fish mucus: In situ measurements of polymer drag reduction. The Biological Bulletin, 1981, 160, 376–382.

    Article  Google Scholar 

  59. Yong J L, Chen F, Yang Q, Huo J L, Hou X. Superoleophobic surfaces. Chemical Society Reviews, 2017, 46, 4168–4217.

    Article  Google Scholar 

  60. Yong J L, Chen F, Yang Q, Farooq U, Hou X. Photoinduced switchable underwater superoleophobicity- superoleophilicity on laser modified titanium surfaces. Journal of Materials Chemistry A, 2015, 3, 10703–10709.

    Article  Google Scholar 

  61. Chen F, Zhang D S, Yang Q, Yong J L, Du G Q, Si J H, Yun F, Hou X. Bioinspired wetting surface via laser microfabrication. ACS Applied Materials & Interfaces, 2013, 5, 6777–6792.

    Article  Google Scholar 

  62. Yong J L, Chen F, Yang Q, Hou X. Femtosecond laser controlled wettability of solid surfaces. Soft Matter, 2015, 11, 8897–8906.

    Article  Google Scholar 

  63. Yong J L, Chen F, Yang Q, Du G Q, Shan C, Bian H, Farooq U, Hou X. Bioinspired transparent underwater superoleophobic and anti-oil surfaces. Journal of Materials Chemistry A, 2015, 3, 9379–9384.

    Article  Google Scholar 

  64. Yong J L, Chen F, Yang Q, Fang Y, Huo J L, Hou X. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability. Chemical Communications, 2015, 48, 9813–9816.

    Article  Google Scholar 

  65. Yong J L, Chen F, Yang Q, Zhang D S, Farooq U, Du G Q, Hou X. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. Journal of Materials Chemistry A, 2014, 2, 8790–8795.

    Article  Google Scholar 

  66. Yong J L, Yang Q, Chen F, Zhang D S, Bian H, Ou Y, Si J H, Du G Q, Hou X. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. Journal of Materials Chemistry A, 2014, 2, 5499–5507.

    Article  Google Scholar 

  67. Yong J L, Yang Q, Chen F, Zhang D S, Bian H, Ou Y, Si J H, Du G Q, Hou X. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser. Applied Physics A, 2013, 111, 243–249.

    Article  Google Scholar 

  68. Yong J L, Chen F, Yang Q, Du G Q, Bian H, Zhang D S, Si J H, Yun F, Hou X. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Applied Materials & Interfaces, 2013, 5, 9382–9385.

    Article  Google Scholar 

  69. Bier M, Dietrich S. Vapour pressure of ionic liquids. Molecular Physics, 2010, 108, 211–214.

    Article  Google Scholar 

  70. Aromaa M, Arffman A, Suhonen H, Haapanen J, Keskinen J, Honkanen M, Nikkanen J P, Levanen E, Messing M E, Deppert K, Teisala H, Tuominen M, Kuusipalo J, Stepien M, Saarinen J J, Toivakka M, Makela J M. Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using liquid flame spray. Journal of Aerosol Science, 2012, 52, 57–68.

    Article  Google Scholar 

  71. Subramanyam S B, Rykaczewski K, Varanasi K K. Ice adhesion on lubricant-impregnated textured surfaces. Langmuir, 2013, 29, 13414–13418.

    Article  Google Scholar 

  72. Stepien M, Saarinen J J, Teisala H, Tuominen M, Haapanen J, Makela J M, Kuusipalo J, Toivakka M. Compressibility of porous TiO2 nanoparticle coating on paperboard. Nanoscale Research Letters, 2013, 8, 444.

    Article  Google Scholar 

  73. Chen J, Liu J, He M, Li K Y, Cui D P, Zhang Q L, Zeng X P, Zhang Y F, Wang J J, Song Y L. Superhydrophobic surfaces cannot reduce ice adhesion. Applied Physics Letters, 2012, 101, 111603.

    Article  Google Scholar 

  74. Juuti P, Haapanen J, Stenroos C, Niemela-Anttonen H, Harra J, Koivuluoto H, Teisala H, Lahti J, Tuominen M, Kuusipalo J, Vuoristo P, Makela J M. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Applied Physics Letters, 2017, 110, 161603.

    Article  Google Scholar 

  75. Zhang P, Lv F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy, 2015, 82, 1068–1087.

    Article  Google Scholar 

  76. Tang Z Y, Wang Y, Podsiadlo P, Kotov N A. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Advanced Materials, 2006, 18, 3203–3224.

    Article  Google Scholar 

  77. Zhu G H, Cho S H, Zhang H, Zhao M M, Zacharia N S. Slippery liquid-infused porous surfaces (SLIPS) using layer-by-layer polyelectrolyte assembly in organic solvent. Langmuir, 2018, 34, 4722–4731.

    Article  Google Scholar 

  78. Sunny S, Vogel N, Howell C, Vu T L, Aizenberg J. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Advanced Functional Materials, 2014, 24, 6658–6667.

    Article  Google Scholar 

  79. Yong J L, Huo J L, Yang Q, Chen F, Fang Y, Wu X J, Liu L, Lu X Y, Zhang J Z, Hou X. Femtosecond laser direct writing of porous network microstructures for fabricating super- slippery surfaces with excellent liquid repellence and anti-cell proliferation. Advanced Materials Interfaces, 2018, 5, 1701479.

    Article  Google Scholar 

  80. Wu G, Paz M D, Chiussi S, Serra J, González P, Wang Y J, Leon B. Excimer laser chemical ammonia patterning on PET film. Journal of Materials Science: Materials in Medicine, 2009, 20, 597.

    Google Scholar 

  81. Dadsetan M, Mirzadeh H, Sharifi N. Effect of CO2 laser radiation on the surface properties of polyethylene terephthalate. Radiation Physics and Chemistry, 1999, 56, 597–604.

    Article  Google Scholar 

  82. Yingling Y G, Garrison B J. Coarse-grained model of the interaction of light with polymeric material: Onset of ablation. The Journal of Physical Chemistry B, 2005, 109, 16482–16489.

    Article  Google Scholar 

  83. Yong J L, Chen F, Yang Q, Fang Y, Huo J L, Zhang J Z, Hou X. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing. Advanced Materials Interfaces, 2017, 4, 1700552.

    Article  Google Scholar 

  84. Baidya A, Das S K, Pradeep T. An aqueous composition for lubricant-free, robust, slippery, transparent coatings on diverse substrates. Global Challenges, 2018, 2, 1700097.

    Article  Google Scholar 

  85. Milionis A, Dang K, Prato M, Loth E, Bayer I S. Liquid repellent nanocomposites obtained from one-step water- based spray. Journal of Materials Chemistry A, 2015, 3, 12880–12889.

    Article  Google Scholar 

  86. Liu X J, Gu H C, Wang M, Du X, Gao B B, Elbaz A, Sun L D, Liao J L, Xiao P F, Gu Z Z. 3D printing of bioinspired liquid superrepellent structures. Advanced Materials, 2018, 30, 1800103.

    Article  Google Scholar 

  87. Villegas M, Cetinic Z, Shakeri A, Didar T F. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating. Analytica Chimica Acta, 2018, 1000, 248–255.

    Article  Google Scholar 

  88. Irajizad P, Hasnain M, Farokhnia N, Sajadi S M, Ghasemi H. Magnetic slippery extreme icephobic surfaces. Nature Communications, 2016, 7, 13395.

    Article  Google Scholar 

  89. Irajizad P, Ray S, Farokhnia N, Hasnain M, Baldelli S, Ghasemi H. Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces. Advanced Materials Interfaces, 2017, 4, 1700009.

    Article  Google Scholar 

  90. Okada I, Shiratori S. High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation. ACS Applied Materials & Interfaces, 2014, 6, 1502–1508.

    Article  Google Scholar 

  91. Masoudi A, Irajizad P, Farokhnia N, Kashyap V, Ghasemi H. Antiscaling magnetic slippery surfaces. ACS Applied Materials & Interfaces, 2017, 9, 21025–21033.

    Article  Google Scholar 

  92. Wang N, Xiong D S, Lu Y, Pan S, Wang K, Deng Y L, Shi Y. Design and fabrication of the lyophobic slippery surface and its application in anti-icing. The Journal of Physical Chemistry C, 2016, 120, 11054–11059.

    Article  Google Scholar 

  93. Eifert A, Paulssen D, Varanakkottu S N, Baier T, Hardt S. Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based on impregnation. Advanced Materials Interfaces, 2014, 1, 1300138.

    Article  Google Scholar 

  94. Liu M M, Hou Y Y, Li J, Tie L, Guo Z G. Transparent slippery liquid-infused nanoparticulate coatings. Chemical Engineering Journal, 2018, 337, 462–470.

    Article  Google Scholar 

  95. Wang P, Li T P, Zhang D. Fabrication of non-wetting surfaces on zinc surface as corrosion barrier. Corrosion Science, 2017, 128, 110–119.

    Article  Google Scholar 

  96. Coady M J, Wood M, Wallace G Q, Nielsen K E, Kietzig A M, Labarthet F L, Ragogna P J. Icephobic behavior of UV-cured polymer networks incorporated into slippery lubricant-infused porous surfaces: Improving SLIPS durability. ACS Applied Materials & Interfaces, 2018, 10, 2890–2896.

    Article  Google Scholar 

  97. Xiang T F, Zhang M, Sadig H R, Li Z C, Zhang M X, Dong C D, Yang L, Chan W M, Li C. Slippery liquid-infused porous surface for corrosion protection with self-healing property. Chemical Engineering Journal, 2018, 345, 147–155.

    Article  Google Scholar 

  98. Wang X Q, Gu C D, Wang L Y, Zhang J L, Tu J P. Ionic liquids-infused slippery surfaces for condensation and hot water repellency. Chemical Engineering Journal, 2018, 343, 561–571.

    Article  Google Scholar 

  99. Togasawa R, Tenjimbayashi M, Matsubayashi T, Moriya T, Manabe K, Shiratori S. A fluorine-free slippery surface with hot water repellency and improved stability against boiling. ACS Applied Materials & Interfaces, 2018, 10, 4198–4205.

    Article  Google Scholar 

  100. Liu Y, Chen X, Xin J H. Can superhydrophobic surfaces repel hot water?. Journal of Materials Chemistry, 2009, 19, 5602–5611.

    Article  Google Scholar 

  101. Li B C, Zhang J P. Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chemical Communications, 2016, 52, 2744–2747.

    Article  Google Scholar 

  102. Urata C, Masheder B, Cheng D F, Hozumi A. A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film. Chemical Communications, 2013, 49, 3318–3320.

    Article  Google Scholar 

  103. Togasawa R, Ohnuki F, Shiratori S. A biocompatible slippery surface based on a boehmite nanostructure with omniphobicity for hot liquids and boiling stability. ACS Applied Nano Materials, 2018, 1, 1758–1765.

    Article  Google Scholar 

  104. Chong T H, Sheikholeslami R. Thermodynamics and kinetics for mixed calcium carbonate and calcium sulfate precipitation. Chemical Engineering Science, 2001, 56, 5391–5400.

    Article  Google Scholar 

  105. Zang D M, Zhu R W, Zhang W, Wu J, Yu X Q, Zhang Y F. Stearic acid modified aluminum surfaces with controlled wetting properties and corrosion resistance. Corrosion Science, 2014, 83, 86–93.

    Article  Google Scholar 

  106. Zhang P Y, Xu D K, Li Y C, Yang K, Gu T Y. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 2015, 101, 14–21.

    Article  Google Scholar 

  107. Tenjimbayashi M, Nishioka S, Kobayashi Y, Kawase K, Li J, Abe J, Shiratori S. A lubricant-sandwiched coating with long-term stable anticorrosion performance. Langmuir, 2018, 34, 1386–1393.

    Article  Google Scholar 

  108. Jing X S, Guo Z G. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability. Nanoscale, 2019, 11, 8870–8881.

    Article  Google Scholar 

  109. Li Q, Guo Z G. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties. Journal of Colloid and Interface Science, 2019, 536, 507–515.

    Article  Google Scholar 

  110. Thomas S K, Cassoni R P, MacArthur C D. Aircraft anti-icing and de-icing techniques and modeling. Journal of Aircraft, 1996, 33, 841–854.

    Article  Google Scholar 

  111. Fortin G, Mayer C, Perron J. Icing wind tunnel study of a wind turbine blade deicing system: Simulation of deicing wind turbine blades with controlled electro-thermal systems. Sea Technology, 2008, 49, 41–44.

    Google Scholar 

  112. Slot H M, Gelinck E R M, Rentrop C, Heide E V. Leading edge erosion of coated wind turbine blades: Review of coating life models. Renewable Energy, 2015, 80, 837–848.

    Article  Google Scholar 

  113. Ishizaki T, Masuda Y, Sakamoto M. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution. Langmuir, 2011, 27, 4780–4788.

    Article  Google Scholar 

  114. Xiu Y H, Liu Y, Hess D W, Wong C P. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces. Nanotechnology, 2010, 21, 155705.

    Article  Google Scholar 

  115. Laforte J L, Allaire M A, Laflamme J. State-of-the-art on power line de-icing. Atmospheric Research, 1998, 46, 143–158.

    Article  Google Scholar 

  116. Beysens D, Knobler C M. Growth of breath figures. Physical Review Letters, 1986, 57, 1433.

    Article  Google Scholar 

  117. Varanasi K K, Hsu M, Bhate N, Yang W S, Deng T. Spatial control in the heterogeneous nucleation of water. Applied Physics Letters, 2009, 95, 094101.

    Article  Google Scholar 

  118. Umur A, Griffith P. Mechanism of dropwise condensation. Journal of Heat Transfer, 1965, 87, 275–282.

    Article  Google Scholar 

  119. Mikic B B. On mechanism of dropwise condensation. International Journal of Heat and Mass Transfer, 1969, 12, 1311–1323.

    Article  Google Scholar 

  120. Narhe R D, Beysens D A. Nucleation and growth on a superhydrophobic grooved surface. Physical Review Letters, 2004, 93, 076103.

    Article  Google Scholar 

  121. Dorrer C, Ruehe J. Wetting of silicon nanograss: From superhydrophilic to superhydrophobic surfaces. Advanced Materials, 2008, 20, 159–163.

    Article  Google Scholar 

  122. Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces. Physical Review Letters, 2009, 103, 184501.

    Article  Google Scholar 

  123. Dorrer C, Rühe J. Some thoughts on superhydrophobic wetting. Soft Matter, 2009, 5, 51–61.

    Article  Google Scholar 

  124. Dietz C, Rykaczewski K, Fedorov A G, Joshi Y. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Applied Physics Letters, 2010, 97, 033104.

    Article  Google Scholar 

  125. Chen X M, Wu J, Ma R Y, Hua M, Koratkar N, Yao S H, Wang Z K. Nanograssed micropyramidal architectures for continuous dropwise condensation. Advanced Functional Materials, 2011, 21, 4617–4623.

    Article  Google Scholar 

  126. Rykaczewski K, Scott J H J. Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano, 2011, 5, 5962–5968.

    Article  Google Scholar 

  127. Rykaczewski K, Chinn J, Walker M L, Scott J H J, Chinn A, Jones W. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation. ACS Nano, 2011, 5, 9746–9754.

    Article  Google Scholar 

  128. Miljkovic N, Enright R, Wang E N. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano, 2012, 6, 1776–1785.

    Article  Google Scholar 

  129. Anderson D M, Gupta M K, Voevodin A A, Hunter C N, Putnam S A, Tsukruk V V, Fedorov A G. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation. ACS Nano, 2012, 6, 3262–3268.

    Article  Google Scholar 

  130. Anand S, Paxson A T, Dhiman R, Smith J D, Varanasi K K. Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano, 2012, 6, 10122–10129.

    Article  Google Scholar 

  131. Zhang C H, Zhang B, Ma H Y, Li Z, Xiao X, Zhang Y H, Cui X Y, Yu C M, Cao M Y, Jiang L. Bioinspired pressure- tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment. ACS Nano, 2018, 12, 2048–2055.

    Article  Google Scholar 

  132. Tang X, Xiong H R, Kong T T, Tian Y, Li W D, Wang L Q. Bioinspired nanostructured surfaces for on-demand bubble transportation. ACS Applied Materials & Interfaces, 2018, 10, 3029–3038.

    Article  Google Scholar 

  133. Yu C M, Zhu X B, Li K, Cao M Y, Jiang L. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface. Advanced Functional Materials, 2017, 27, 1701605.

    Article  Google Scholar 

  134. Rosenberg B J, Buren T V, Fu M K, Smits A J. Turbulent drag reduction over air-and liquid-impregnated surfaces. Physics of Fluids, 2016, 28, 015103.

    Article  Google Scholar 

  135. Bechert D W, Bruse M, Hage W, Van der Hoeven J G T, Hoppe G. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 1997, 338, 59–87.

    Article  Google Scholar 

  136. Bechert D W, Bartenwerfer M. The viscous flow on surfaces with longitudinal ribs. Journal of Fluid Mechanics, 1989, 206, 105–129.

    Article  Google Scholar 

  137. Debisschop J R, Nieuwstadt F T M. Turbulent boundary layer in an adverse pressure gradient-effectiveness of riblets. AIAA Journal, 1996, 34, 932–937.

    Article  Google Scholar 

  138. Gad-el-Hak M. Boundary layer interactions with compliant coatings: An overview. Applied Mechanics Reviews, 1986, 39, 511–524.

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Nature Science Foundation of China (NO 51675513 and 51735013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Guo, Z. Fabrications and Applications of Slippery Liquid-infused Porous Surfaces Inspired from Nature: A Review. J Bionic Eng 16, 769–793 (2019). https://doi.org/10.1007/s42235-019-0096-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0096-2

Keywords

Navigation