Skip to main content
Log in

Bioinspired 4D Printing Shape-Memory Polyurethane Rhinoplasty Prosthesis for Dynamic Aesthetic Adjustment

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The disparity between the postoperative outcomes of rhinoplasty and the expected results frequently necessitates secondary or multiple surgeries as a compensatory measure, greatly diminishing patient satisfaction. However, there is renewed optimism for addressing these challenges through the innovative realm of Four-Dimensional (4D) printing. This groundbreaking technology enables three-dimensional objects with shape-memory properties to undergo predictable transformations under specific external stimuli. Consequently, implants crafted using 4D printing offer significant potential for dynamic adjustments. Inspired by worms in our research, we harnessed 4D printing to fabricate a Shape-Memory Polyurethane (SMPU) for use as a nasal augmentation prosthesis. The choice of SMPU was guided by its Glass Transition Temperature (Tg), which falls within the acceptable temperature range for the human body. This attribute allowed for temperature-responsive intraoperative self-deformation and postoperative remodeling. Our chosen animal model for experimentation was rabbits. Taking into account the anatomical structure of the rabbit nose, we designed and produced nasal augmentation prostheses with superior biocompatibility. These prostheses were then surgically implanted in a minimally invasive manner into the rabbit noses. Remarkably, they exhibited successful temperature-controlled in-surgery self-deformation according to the predetermined shape and non-invasive remodeling within a mere 9 days post-surgery. Subsequent histological evaluations confirmed the practical viability of these prostheses in a living organism. Our research findings posit that worm-inspired 4D-printed SMPU nasal prostheses hold significant promise for achieving dynamic aesthetic adjustments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

Abbreviations

3D:

Three-dimensional

4D:

Four-dimensional

SMPs:

Shape memory polymers

SMPU:

Shape-memory polyurethane

PU:

Polyurethane

Tg :

Glass transition temperature

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscopy

References

  1. Suh, M. K. (2021). Cosmetic augmentation rhinoplasty for East Asians. Facial Plastic Surgery Clinics of North America, 29(4), 589–609. https://doi.org/10.1016/j.fsc.2021.06.010

    Article  Google Scholar 

  2. Wang, J. X., Liao, S. H., Zhu, X. H., Wang, Y., Ling, C. X., Ding, X., Fang, Y. M., & Zhang, X. H. (2011). Real time 3D simulation for nose surgery and automatic individual prosthesis design. Computer Methods and Programs in Biomedicine, 104(3), 472–479. https://doi.org/10.1016/j.cmpb.2010.09.001

    Article  Google Scholar 

  3. Moyer, J. (2018). Dissatisfaction with nasal tip shape: Secondary tip maneuvers. Facial Plastic Surgery, 34(03), 278–286. https://doi.org/10.1055/s-0038-1653988

    Article  Google Scholar 

  4. Eytan, D. F., & Wang, T. D. (2022). Complications in rhinoplasty. Clinics in Plastic Surgery, 49(1), 179–189. https://doi.org/10.1016/j.cps.2021.07.009

    Article  Google Scholar 

  5. De Greve, G., Malka, R., Barnett, E., Robotti, E., Haug, M., Hamilton, G., Lekakis, G., & Hellings, P. W. (2022). Three-dimensional technology in rhinoplasty. Facial Plastic Surgery, 38(05), 483–487. https://doi.org/10.1055/s-0041-1741501

    Article  Google Scholar 

  6. Lee, I., Ohba, N., Lee, H., Lee, K. S., & Lee, M. (2022). The usefulness of patient-specific 3D nasal silicone implant using 3D design and order form. Clinical, Cosmetic and Investigational Dermatology, 15, 177–184. https://doi.org/10.2147/ccid.S344284

    Article  Google Scholar 

  7. Lee, J., Kim, H. C., Choi, J.-W., & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 373–383. https://doi.org/10.1007/s40684-017-0042-x

    Article  Google Scholar 

  8. Shie, M. Y., Shen, Y. F., Astuti, S. D., Lee, A. K., Lin, S. H., Dwijaksara, N. L. B., & Chen, Y. W. (2019). Review of polymeric materials in 4D printing biomedical applications. Polymers (Basel), 11(11), 1864. https://doi.org/10.3390/polym11111864

    Article  Google Scholar 

  9. Deng, Y., Yang, B., Zhang, F., Liu, Y., Sun, J., Zhang, S., Zhao, Y., Yuan, H., & Leng, J. (2022). 4D printed orbital stent for the treatment of enophthalmic invagination. Biomaterials, 291, 121886. https://doi.org/10.1016/j.biomaterials.2022.121886

    Article  Google Scholar 

  10. Verma, S., & Kumar Verma, V. (2022). Shape memory polymers for additive manufacturing: An overview. Materials Today: Proceedings, 57, 2077–2081. https://doi.org/10.1016/j.matpr.2021.11.507

    Article  Google Scholar 

  11. Zhao, W., Yue, C., Liu, L., Liu, Y., & Leng, J. (2022). Research progress of shape memory polymer and 4D printing in biomedical application. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202201975

    Article  Google Scholar 

  12. Xia, Y., He, Y., Zhang, F., Liu, Y., & Leng, J. (2020). A review of shape memory polymers and composites: Mechanisms, materials, and applications. Advanced Materials. https://doi.org/10.1002/adma.202000713

    Article  Google Scholar 

  13. Mondal, S. (2021). Temperature responsive shape memory polyurethanes. Polymer-Plastics Technology and Materials. https://doi.org/10.1080/25740881.2021.1906903

    Article  Google Scholar 

  14. Su, J. W., Gao, W., Trinh, K., Kenderes, S. M., Tekin Pulatsu, E., Zhang, C., Whittington, A., Lin, M., & Lin, J. (2019). 4D printing of polyurethane paint-based composites. International Journal of Smart and Nano Materials, 10(3), 237–248. https://doi.org/10.1080/19475411.2019.1618409

    Article  Google Scholar 

  15. Zhang, Y., Li, C., Zhang, W., Deng, J., Nie, Y., Du, X., Qin, L., & Lai, Y. (2022). 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioactive Materials, 16, 218–231. https://doi.org/10.1016/j.bioactmat.2021.12.032

    Article  Google Scholar 

  16. Sokolowski, W., Metcalfe, A., Hayashi, S., Yahia, L. H., & Raymond, J. (2007). Medical applications of shape memory polymers. Biomedical Materials, 2(1), S23–S27. https://doi.org/10.1088/1748-6041/2/1/s04

    Article  Google Scholar 

  17. Katschnig, M., Wallner, J., Janics, T., Burgstaller, C., Zemann, W., & Holzer, C. (2020). Biofunctional glycol-modified polyethylene terephthalate and thermoplastic polyurethane implants by extrusion-based additive manufacturing for medical 3D maxillofacial defect reconstruction. Polymers. https://doi.org/10.3390/polym12081751

    Article  Google Scholar 

  18. Kim, H. Y., Jung, S. Y., Lee, S. J., Lee, H. J., Truong, M. D., & Kim, H. S. (2019). Fabrication and characterization of 3D-printed elastic auricular scaffolds: A pilot study. The Laryngoscope, 129(2), 351–357. https://doi.org/10.1002/lary.27344

    Article  Google Scholar 

  19. Deng, Y., Zhang, F., Liu, Y., Zhang, S., Yuan, H., & Leng, J. (2023). 4D printed shape memory polyurethane-based composite for bionic cartilage scaffolds. ACS Applied Polymer Materials, 5(2), 1283–1292. https://doi.org/10.1021/acsapm.2c01833

    Article  Google Scholar 

  20. Kashyap, D., Kishore Kumar, P., & Kanagaraj, S. (2018). 4D printed porous radiopaque shape memory polyurethane for endovascular embolization. Additive Manufacturing, 24, 687–695. https://doi.org/10.1016/j.addma.2018.04.009

    Article  Google Scholar 

  21. Kenney, W. L., DeGroot, D. W., & Alexander Holowatz, L. (2004). Extremes of human heat tolerance: Life at the precipice of thermoregulatory failure. Journal of Thermal Biology, 29(7–8), 479–485. https://doi.org/10.1016/j.jtherbio.2004.08.017

    Article  Google Scholar 

  22. Lam, S. (2008). Revision rhinoplasty for the Asian nose. Facial Plastic Surgery, 24(03), 372–377. https://doi.org/10.1055/s-0028-1083091

    Article  Google Scholar 

  23. Kontis, T. (2018). The art of camouflage: When can a revision rhinoplasty be nonsurgical? Facial Plastic Surgery, 34(03), 270–277. https://doi.org/10.1055/s-0038-1653989

    Article  Google Scholar 

  24. Chu, H., Yang, W., Sun, L., Cai, S., Yang, R., Liang, W., Yu, H., & Liu, L. (2020). 4D printing: a review on recent progresses. Micromachines. https://doi.org/10.3390/mi11090796

    Article  Google Scholar 

  25. Wunderlich, B. (2006). The glass transition of polymer crystals. Thermochimica Acta, 446(1–2), 128–134. https://doi.org/10.1016/j.tca.2005.11.011

    Article  Google Scholar 

  26. Aslan, S., & Kaplan, S. (2018). Thermomechanical and shape memory performances of thermo-sensitive polyurethane fibers. Fibers and Polymers, 19(2), 272–280. https://doi.org/10.1007/s12221-018-7127-6

    Article  Google Scholar 

  27. Li, G., Tian, Q., Ren, L., Wu, Q., Wu, W., Yang, S., Zhao, Y., Wang, J., Zhou, X., Wang, K., Liu, Q., & Chen, F. (2023). Effects of pre-programmed 4D printing process parameters on the shape memory performance of polyurethane. Smart Manufacturing. https://doi.org/10.1142/s2737549822400026

    Article  Google Scholar 

  28. Zhou, J., Huang, X., Zheng, D., Li, H., Herrler, T., & Li, Q. (2014). Oriental nose elongation using an L-shaped polyethylene sheet implant for combined septal spreading and extension. Aesthetic Plastic Surgery, 38(2), 295–302. https://doi.org/10.1007/s00266-014-0299-1

    Article  Google Scholar 

  29. Nguyen, A. H., Bartlett, E. L., Kania, K., & Bae, S. M. (2019). Erratum: Simple implant augmentation rhinoplasty. Seminars in Plastic Surgery, 29(04), e1–e1. https://doi.org/10.1055/s-0039-3399501

    Article  Google Scholar 

  30. Hwang, N. H., & Dhong, E. S. (2018). Septal extension graft in Asian rhinoplasty. Facial Plastic Surgery Clinics of North America, 26(3), 331–341. https://doi.org/10.1016/j.fsc.2018.03.007

    Article  Google Scholar 

  31. Cologlu, H., Uysal, A., Kocer, U., Kankaya, Y., Oruc, M., & Uysal, S. (2006). Rhinoplasty model in rabbit. Plastic and Reconstructive Surgery, 117(6), 1851–1859. https://doi.org/10.1097/01.prs.0000221875.24467.2d

    Article  Google Scholar 

  32. Kim, Y. S., Park, D.-Y., Cho, Y. H., Chang, J. W., Choi, J. W., Park, J. K., Min, B. H., Shin, Y. S., & Kim, C. H. (2015). Cultured chondrocyte and porcine cartilage-derived substance (PCS) construct as a possible dorsal augmentation material in rhinoplasty: A preliminary animal study. Journal of Plastic, Reconstructive & Aesthetic Surgery, 68(5), 659–666. https://doi.org/10.1016/j.bjps.2014.12.017

    Article  Google Scholar 

  33. Won, H.-R., Kim, Y. S., Won, J.-E., Shin, Y. S., & Kim, C.-H. (2017). The application of fibrin/hyaluronic acid–poly(L-lactic-co-glycolic acid) construct in augmentation rhinoplasty. Tissue Engineering and Regenerative Medicine, 15(2), 223–230. https://doi.org/10.1007/s13770-017-0095-5

    Article  Google Scholar 

  34. Kim, Y. S., Shin, Y. S., Park, D. Y., Choi, J. W., Park, J. K., Kim, D. H., Kim, C. H., & Park, S. A. (2015). The application of three-dimensional printing in animal model of augmentation rhinoplasty. Annals of Biomedical Engineering, 43(9), 2153–2162. https://doi.org/10.1007/s10439-015-1261-3

    Article  Google Scholar 

  35. Jafari, M., Maleki Delarestaghi, M., Jahandideh, H., Rajaeih, S., Ghashghaei, S., Wood, D. A., & Gazia, F. (2022). The effect of subcutaneous dexamethasone to reduce edema and ecchymosis in rhinoplasty patients. International Journal of Otolaryngology, 2022, 1–7. https://doi.org/10.1155/2022/3054767

    Article  Google Scholar 

  36. Kook, W. S., Yang, C. E., & Lew, D. H. (2019). Removal of nasal silicone implant and the impact of subsequent capsulectomy. Plastic & Reconstructive Surgery, 144(4), 575e–585e. https://doi.org/10.1097/prs.0000000000006095

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the talent reserve program of the first hospital of Jilin University (Grant Nos. JDYY-TRP-2024002); the National Natural Science Foundation of China (Grant Nos. 82372391, 82001971, 82102358 and 82202698); Scientific Development Program of Jilin Province (Grant Nos. 20200403088SF, 20220204117YY, YDZJ202201ZYTS086, 20200404202YY and 20200802008GH); Program of Jilin Provincial Health Department (Grant No. 2020SC2T064 and 2020SC2T065); Project of "Medical + X" Interdisciplinary Innovation Team of Norman Bethune Health Science Center of Jilin University (Grant No. 2022JBGS06); China Postdoctoral Science Foundation (Grant No. 2021M701384); Bethune Plan of Jilin University (Grant No. 2022B27, 2022B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

The Institutional Animal Ethics Committee of the First hospital of Jilin university (approval no.: 20210339) approved all animal experiments.

Consent for publication

All the co-authors were aware of this submission and approve for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file7 (DOCX 13054 KB)

Supplementary file8 (MP4 1766 KB)

Supplementary file9 (MP4 2923 KB)

Supplementary file10 (MP4 640 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, G., Liu, H. et al. Bioinspired 4D Printing Shape-Memory Polyurethane Rhinoplasty Prosthesis for Dynamic Aesthetic Adjustment. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00503-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00503-9

Keywords

Navigation