Skip to main content
Log in

Research Progress on Bionic Water Strider Robots

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Biological water striders have advantages such as flexible movement, low disturbance to the water surface, and low noise. Researchers have developed a large number of biomimetic water strider robots based on their movement mechanism, which have broad application prospects in water quality testing, water surface reconnaissance, and search. This article mainly reviews the research progress of biomimetic water strider robots. First, the biological and kinematic characteristics of water striders are outlined, and some mechanical parameters of biological water striders are summarized. The basic equations of water strider movement are then described. Next, an overview is given of the past and current work on skating and jumping movements of biomimetic water strider robots based on surface tension and water pressure dominance. Based on the current research status of biomimetic water strider robots, the shortcomings of current research on biomimetic water striders are summarized, and the future development of biomimetic water strider robots is discussed. This article provides new insights for the design of biomimetic water strider robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Dickinson, M. (1999). Bionics: biological insight into mechanical design. Proceedings of National Academy of Sciences, 96, 14208–14209. https://doi.org/10.1073/pnas.96.25.14208

    Article  Google Scholar 

  2. Lu, Y. X. (2004). Significance and progress of bionics. Journal of Bionic Engineering, 1, 1–3. https://doi.org/10.1007/BF03399448

    Article  Google Scholar 

  3. Hu, D. L., & Bush, J. W. M. (2010). The hydrodynamics of water-walking arthropods. Journal of Fluid Mechanics, 644, 5–33. https://doi.org/10.1017/S0022112009992205

    Article  Google Scholar 

  4. Gao, X., & Jiang, L. (2004). Biophysics: water-repellent legs of water striders. Nature, 4, 432–436. https://doi.org/10.1038/432036a

    Article  Google Scholar 

  5. Watson, G. S., Cribb, B. W., & Watson, J. A. (2010). Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider. Acta Biomaterialia, 6, 4060–4064. https://doi.org/10.1016/j.actbio.2010.04.016

    Article  Google Scholar 

  6. Ding, Y., Xu, S., Zhang, Y., Wang, A. C., Wang, M. H., Xiu, Y. H., Wong, C. P., & Wang, Z. L. (2008). Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry. Nanotechnology, 19, 355708. https://doi.org/10.1088/0957-4484/19/35/355708

    Article  Google Scholar 

  7. Su, Y. W., Ji, B. H., Huang, Y., & Hwang, K. C. (2010). Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir, 26, 18926–18937. https://doi.org/10.1021/la103442b

    Article  Google Scholar 

  8. Bush, J. W. M., Hu, D. L., & Prakash, M. (2007). The integument of water-walking arthropods: form and function. Advances In Insect Physiology, 34, 117–192. https://doi.org/10.1016/S0065-2806(07)34003-4

    Article  Google Scholar 

  9. Xu, L., Yao, X., & Zheng, Y. (2012). Direction-dependent adhesion of water strider’s legs for water-walking. Solid State Sciences, 14, 1146–1151. https://doi.org/10.1016/j.solidstatesciences.2012.05.029

    Article  Google Scholar 

  10. Zheng, Q. S., Yu, Y., & Feng, X. Q. (2009). The role of adaptive-deformation of water strider leg in its walking on water. Journal of Adhesion Science and Technology, 23, 493–501. https://doi.org/10.1163/156856108X379155

    Article  Google Scholar 

  11. Vella, D. (2008). Floating objects with finite resistance to bending. Langmuir the ACS Journal of Surfaces And Colloids, 24, 8701–8706. https://doi.org/10.1021/la800245k

    Article  Google Scholar 

  12. Kong, X. Q., Liu, J. L., Zhang, W. J., & Qu, Y. D. (2015). Load-bearing ability of the mosquito tarsus on water surfaces arising from its flexibility. AIP Advances, 5, 037101. https://doi.org/10.1063/1.4908027

    Article  Google Scholar 

  13. Ji, X. Y., Wang, J. W., & Feng, X. Q. (2012). Role of flexibility in the water repellency of water strider legs: theory and experiment. Physical Review E, 85, 021607. https://doi.org/10.1103/PhysRevE.85.021607

    Article  Google Scholar 

  14. Yabe, T., Chinda, K., & Hiraishi, T. (2007). Computation of sur-face tension and contact angle and its application to water strider. Computers & Fluids, 36, 184–190. https://doi.org/10.1016/j.compfluid.2005.07.011

    Article  Google Scholar 

  15. Darnhofer-Demar, B. (1969). Zur fortbewegung des wasserlaufers gerris lacustris L. auf des wasseroberflache. Zoologischer Anzeiger, 32, 430–439.

    Google Scholar 

  16. Denny, M. W. (1993). Air and water: The biology and physics of life’s media (pp. 259–260). Princeton: Princeton University Press.

    Book  Google Scholar 

  17. Hu, D. L., Chan, B., & Bush, J. W. M. (2003). The hydrodynamics of water strider locomotion. Nature, 424, 663–666. https://doi.org/10.1038/nature01793

    Article  Google Scholar 

  18. Sun, S. M., & Keller, J. B. (2001). Capillary-gravity wave drag. Physics of Fluids, 13, 2146–2151. https://doi.org/10.1063/1.1384889

    Article  MathSciNet  Google Scholar 

  19. Song, Y. S., & Sitti, M. (2007). Surface-tension-driven biologically inspired water strider robots: theory and experiments. IEEE Transactions on Robotics, 23, 578–589. https://doi.org/10.1109/TRO.2007.895075

    Article  Google Scholar 

  20. Wei, P. J., Chen, S. C., & Lin, J. F. (2008). Adhesion forces and contact angles of water strider legs. Langmuir, 25, 1526–1528. https://doi.org/10.1021/la803223r

    Article  Google Scholar 

  21. Gao, P., & Feng, J. J. (2011). A numerical investigation of the propulsion of water walkers. Journal of Fluid Mechanics, 668, 363–383. https://doi.org/10.1017/S0022112010004763

    Article  MathSciNet  Google Scholar 

  22. Wang, L., Gao, T. H., Gao, F., Xue, Y. H., & Wang, Y. (2010). Experimental research on locomotion characters of water strider and movement realization on a water strider robot. In IEEE international conference on robotics & biomimetics, Tianjin, China (pp. 585–590). https://doi.org/10.1109/ROBIO.2010.5723391

  23. Zheng, Y. L., Lu, H. Y., Yin, W., Tao, D. S., Shi, L. C., & Tian, Y. (2016). Elegant shadow making tiny force visible for water-walking arthropods and updated archimedes’ principle. Langmuir, 32, 02922. https://doi.org/10.1021/acs.langmuir.6b02922

    Article  Google Scholar 

  24. Yin, W., Zheng, Y. L., Lu, H. Y., Zhang, X. J., & Tian, Y. (2016). Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs. Applied Physics Letters, 109, 663–2310. https://doi.org/10.1063/1.4964788

    Article  Google Scholar 

  25. Yu, M., Ji, A. H., & Dai, Z. D. (2006). Effect of microscale contact state of polyurethane surface on adhesion and friction. Journal of Bionic Engineering, 3, 87–89. https://doi.org/10.1016/S1672-6529(06)60012-7

    Article  Google Scholar 

  26. Zhao, J., Wang, T., Yan, J. H., Liu, G. F., & Zhang, X. B. (2016). A water-walking robot mimicking the jumping abilities of water striders. Bioinspiration & Biomimetics, 11, 066002. https://doi.org/10.1088/1748-3190/11/6/066002

    Article  Google Scholar 

  27. Ma, J. Z., Lu, H. Y., Li, X. S., & Tian, Y. (2020). Interfacial phenomena of water striders on water surfaces: a review from biology to biomechanics. Zoological Research, 41, 21–36. https://doi.org/10.24272/j.issn.2095-8137.2020.029

    Article  Google Scholar 

  28. Koh, J. S., Yang, E., Jung, G. P., Jung, S. P., Son, J. H., Lee, S. I., Jablonski, P. G., Wood, R. J., Kim, H. Y., & Cho, K. J. (2015). Jumping on water: Surface tension–dominated jumping of water striders and robotic insects. Science, 349, 517. https://doi.org/10.1126/science.aab1637

    Article  Google Scholar 

  29. Mansfield, E. H., Sepangi, H. R., & Eastwood, E. A. (1997). Equilibrium and mutual attraction or repulsion of objects supported by surface tension. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 335, 869–919. https://doi.org/10.1098/rsta.1997.0049

    Article  Google Scholar 

  30. Keller, J. B. (1998). Surface tension force on a partly submerged body. Physics of Fluids, 10(3009), 3010. https://doi.org/10.1063/1.869820

    Article  MathSciNet  Google Scholar 

  31. Suhr, S. H., Yun, S.S., Sang, J.L., & Sitti, M. (2005). Biologically inspired miniature water strider robot. In Robotics: Science and systems conference, Cambridge, USA (pp. 319–326). https://doi.org/10.15607/RSS.2005.I.042

  32. Feng, X. Q., Gao, X. F., Wu, Z. N., Jiang, L., & Zheng, Q. S. (2007). Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir the Acs Journal of Surfaces & Colloids, 23, 4892. https://doi.org/10.1021/la063039b

    Article  Google Scholar 

  33. Hu, D. L. (2006). The hydrodynamics of water-walking insects and spiders. Dissertation, Massachusetts Institute of Technology. (in USA)

  34. Song, Y. S., Suhr, S. H., & Sitti, M. (2006). Modeling of the supporting legs for designing biomimetic water strider robots. In IEEE international conference on robotics & automation, Orlando, USA (pp. 2303–2310). https://doi.org/10.1109/ROBOT.2006.1642046

  35. Basso, B., Fong, A., Hurst, A., Knapp, M. (2005). Robot using surface tension. Dissertation, Columbia University

  36. Wu, L., Ding, L., Guo, D. (2006). A bionic water strider robot. China Patent, No.0112601.7.

  37. Wu, L. C., Lian, Z. P., Yuan H. B., Wang, S. H., & Yang G. S. (2010). A non-tethered telecontrollable water strider robot prototype. In International conference on intelligent control and information processing (ICICIP), Dalian, China (pp. 792–797). https://doi.org/10.1109/ICICIP.2010.5564347

  38. Wu, L. C., Sun, F. C., & Yuan, H. B. (2010). Water strider robot. Jiqiren/Robot, 32, 443–448. https://doi.org/10.3724/SP.J.1218.2010.00443

    Article  Google Scholar 

  39. Wang, L., Gao, T. H., Gao, F., Zhao, J. L., & Wu, J. N. (2010). Statics analysis on the leg of water strider robot. In IEEE International conference on robotics and biomimetics, Tianjin, China (pp. 1176–1179). https://doi.org/10.1109/robio.2010.5723520

  40. Lian, Z. P., Wu, L. C., & L, Yuan, H. B. (2010). Design and realization of a kind of water strider robot. Jiqiren Robot, 32, 449–453. https://doi.org/10.3724/SP.J.1218.2010.00449

    Article  Google Scholar 

  41. Wu, L. C., Lian, Z. P., Yang, G. S., & Marco, C. (2011). Water dancer II-a: a non-tethered telecontrollable water strider robot. International Journal of Advanced Robotic Systems, 8, 10–17. https://doi.org/10.5772/45704

    Article  Google Scholar 

  42. Suzuki, K., Takanobu, H., Noya, K., Koike, H., & Miura, H. (2007). Water strider robots with Microfabricated hydrophobic legs. In IEEE/RSJ international conference on intelligent robots & systems, San Diego, USA (pp. 1425–1428). https://doi.org/10.1109/IROS.2007.4399460

  43. Song, Y. S., & Sitti, M. (2007). STRIDE: A highly maneuverable and non-tethered water strider robot. In 2007 IEEE international conference on robotics and automation, Rome, Italy (pp. 980–984). https://doi.org/10.1109/ROBOT.2007.363112

  44. Ozcan, O., Wang, H., Taylor, J. D., & Sitti, M. (2014). STRIDE II: a water strider-inspired miniature robot with circular footpads. International Journal of Advanced Robotic Systems, 11, 1–11. https://doi.org/10.5772/58701

    Article  Google Scholar 

  45. Hu, D. L., Prakash, M., & Bush, J. W. M. (2010). Water-walking devices. Experiments in Fluids, 43, 769–778. https://doi.org/10.1007/s00348-007-0339-6

    Article  Google Scholar 

  46. Wu, L., Ding, L., Guo, D., Yao, L., Fu, H. (2007). Floating bionic terrapin robot on water. China Patent, No. CN1911730A.

  47. Wang, L. (2009). Theoretical and experimental research on the characteristics of water strider like robots. Dissertation, Hebei University of Technology

  48. Zhang, M. W. (2010). Research on biomimetic water strider robot. Dissertation, Harbin Institute of Technology

  49. Zhang, X. B., Zhao, J., Zhu, Q., Chen, N., & Pan, Q. M. (2011). Bioinspired aquatic microrobot capable of walking on water surface like a water strider. ACS Applied Materials & Interfaces, 3, 2630–2636. https://doi.org/10.1021/am200382g

    Article  Google Scholar 

  50. Yan, J. H., Zhang, X. B., Zhao, J., Liu, G. F., Cai, H. G., & Pan, Q. M. (2015). A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider’s locomotion. Bioinspiration & Biomimetics. https://doi.org/10.1088/1748-3190/10/4/046016

    Article  Google Scholar 

  51. Zhang, X. B., Yan, J. H., Zhao, J., Liu, G. F., Cai, H. G., & Pan, Q. M. (2015). A miniature surface tension-driven robot mimicking the water-surface locomotion of water strider. In IEEE International Conference of Robotics and Automation (ICRA), Seattle, USA (pp. 3172–3177). https://doi.org/10.1109/ICRA.2015.7139636

  52. Suzuki, K., Ichinose, R. W., Takanobu, H., & Miura, H. (2017). Development of water surface mobile robot inspired by water striders. Micro & Nano Letters, 12, 575–579. https://doi.org/10.1049/mnl.2017.0134

    Article  Google Scholar 

  53. Zhou, S., Zhang, W. P., Zou, Y., Ke, X. J., Cui, F., & Liu, W. (2017). Piezoelectric driven insect-inspired robot with flapping wings capable of skating on the water. Electronics Letters, 53, 579–580. https://doi.org/10.1049/el.2017.0186

    Article  Google Scholar 

  54. Yan, J. H., Yang, K., Liu, G. F., & Zhao, J. (2020). Flexible driving mechanism inspired water strider robot walking on water surface. IEEE Access, 8, 89643–89654. https://doi.org/10.1109/ACCESS.2020.2993078

    Article  Google Scholar 

  55. Yan, J. H., Yang, K., Yang Y., Zhao, J., Liu, G. F., Tang, & S. F. (2019). A new robot skating on water surface intimating water striders based on flexible driving mechanism. In IEEE international conference of robotics and automation (ICRA), Seattle, USA (pp. 2468–2473). https://doi.org/10.1109/ICRA.2015.7139636

  56. Huo, J.H. (2012). Dynamic modeling and experimental study of bionic water strider robot. Dissertation, Harbin Institute of Technology

  57. Wang, C. Z., Shen, Y., Sheng, C. W., Huang, L., Wei, Y., Miao, J., Huang, H. C. (2017). Bionic water strider robot for water skating. China Patent, No. 107472472A.

  58. Nakamura, T., Iinuma, K., Omata, T., & Fujii, S. (2006). Development of a water strider robot which moves surface of the water. In Proceedings of the 2006 JSME conference on robotics and mechatronics, Waseda, Japan (pp. 893–879). https://doi.org/10.1299/jsmermd.2006._2P1-A18_1

  59. Nakamura, T., Iinuma, K., Fujii, S., & Kimura, K. (2008). Modeling and position control of water strider robot moving on the water. In The proceedings of JSME annual conference on robotics and mechatronics (Robomec), Japan (pp. 1–4). https://doi.org/10.1299/jsmermd.2008._2P2-H14_1

  60. Iinuma, K., Fujii, S., & Nakamura, T. (2007). Development of an amphibious robot based on a water stride. in Proceedings of the 2007 JSME conference on robotics and mechatronics, Akita, Japan (pp. 135–143). https://doi.org/10.1142/9789812770189_0017

  61. Gao, T. H., Gao, J. Y., Zhu, D., & Zhi, J. Z. (2007). Study on kinematics analysis and mechanism realization. In IEEE international conference on integration technology, Shenzhen, China (pp. 685–690). https://doi.org/10.1109/ICITECHNOLOGY.2007.4290406

  62. Gao, T. H., Gao, J. Y., Gao, F., & Zhu, D. Y. (2006). The research of a bionic robot that can walk on water surface based on water strider. In Technology and innovation conference, Hangzhou, China (2180–2185). https://doi.org/10.1049/cp:20061133

  63. Gao, T. H., Zhu, D. Y., Gao, J. Y., & Qin, Y. X. (2008). Modality analysis on the structure of a novel bionic miniature water strider robot. In IEEE international conference on robotics & biomimetics, Sanya, China (pp. 775–780). https://doi.org/10.1109/ROBIO.2007.4522261

  64. Zhao, J., Zhang, X. B., & Pan, Q. M. (2012). A water walking robot inspired by water strider. In IEEE international conference on mechatronics and automation, Chengdu, China (pp. 962–967). https://doi.org/10.1109/ICMA.2012.6283380

  65. Wu, G., Sheng, C. W., Shen, Y., Guo, Y., Liu, X., Zhang, C. Y., Wu, Y. P., & Huang, H. C. (2018). Structural design and stroke kinematics analysis of a water strider robot. In OCEANS 2018 MTS/IEEE Charleston, Charleston, USA (pp. 1–6). https://doi.org/10.1109/OCEANS.2018.8604764

  66. Huang, H., Zhang, S., Chen, X., Miao, J., & Ge, H. (2016). Design and modeling of a novel biomimetic robot inspired by water strider. Marine Technology Society Journal, 50, 35–44. https://doi.org/10.4031/MTSJ.50.5.5

    Article  Google Scholar 

  67. Sun, J., Li, X., Song, J., Huang, L., Liu, X., Liu, J., Zhang, Z., & Zhao, C. (2018). Water strider-inspired design of a water walking robot using superhydrophobic Al surface. Journal of Dispersion Science & Technology, 39, 1–8. https://doi.org/10.1080/01932691.2018.1462199

    Article  Google Scholar 

  68. Sun, T. F., Li, Z., & Luo, J. (2012). Design and implementation of a water strider robot with new mechanisms. Electromechanical Engineering, 29, 38–41. https://doi.org/10.3969/j.issn.1001-4551.2012.01.009

    Article  Google Scholar 

  69. Yan, J. H., Zhang, X. B., Yang, K., & Zhao, J. (2019). A single driven bionic water strider skating robot mimicking the spatial elliptical trajectory. In IEEE international conference on robotics and biomimetics (ROBIO), Dali, China (pp. 142–147). https://doi.org/10.1109/ROBIO49542.2019.8961712

  70. Shim, G., Bonghwan, K., Lee, K., Chun, K., & Cho, C. S. (2019). 3D printed water strider robot with environmental monitoring. Journal of Sensor Science and Technology, 28, 407–413.

    Google Scholar 

  71. Irawan, A., Khim, B. K., & Yin, T. Y. (2015). PSpHT a water strider-like robot for water inspection: framework and control architecture. In International conference on ubiquitous robots & ambient intelligence, Kuala Lumpur, Malaysia (pp. 403–407). https://doi.org/10.1109/URAI.2014.7057377

  72. Yao, C. Y., Sheng, T. W., Zhu, Y. J., Xu, K. X., & Zhang, S. W. (2022). A water strider robot with five umbrella-type footpads. Journal of Bionic Engineering, 19, 331–342. https://doi.org/10.1007/s42235-021-00147-z

    Article  Google Scholar 

  73. Lee, K. Y., Wang L., Qu J. H., & Oldham, K. R. (2019). Milli-scale biped vibratory water strider. In International conference on manipulation, automation and robotics at small scales (MARSS), Helsinki, Finland (pp. 19045985). https://doi.org/10.1109/MARSS.2019.8860988

  74. Shin, B., Kim, H. Y., & Cho, K. J. (2008). Towards a biologically inspired small-scale water jumping robot. In Biomedical robotics and biomechatronics, BioRob 2008. 2nd IEEE RAS & EMBS international conference, Scottsdale, USA (pp. 127–131). https://doi.org/10.1109/BIOROB.2008.4762896

  75. Zhao, J., Zhang, X. B., Chen, N., & Pan, Q. M. (2012). Why superhydrophobicity is crucial for a water-jumping microrobot? experimental and theoretical investigations. ACS Applied Materials & Interfaces, 4, 3706–3711. https://doi.org/10.1021/am300794z

    Article  Google Scholar 

  76. Yan, J. H., Yang, K., Wang, T., & Zhao, J. (2015). Research on design and jumping performance of a new water-jumping robot imitating water striders. In IEEE international conference on information & automation, Lijiang, China (pp. 353–358). https://doi.org/10.1109/ICInfA.2015.7279312

  77. Yan, J. H., Yang, K., Wang, T., & Zhao, J. (2016). A continuous jumping robot on water mimicking water striders. In IEEE international conference on robotics and automation ICRA, Stockholm, Sweden (pp. 4686–4691). https://doi.org/10.1109/ICRA.2016.7487669

  78. Yang, K., Liu, G. F., Yan, J. H., Wang, T., Zhang, X. B., & Zhao, J. (2016). A water-walking robot mimicking the jumping abilities of water striders. Bioinspiration & Biomimetic, 11, 66002. https://doi.org/10.1088/1748-3190/11/6/066002

    Article  Google Scholar 

  79. Jiang, F., Zhao, J., Kota, A. K., Xi, N., Mutka, M. W., & Xiao, L. (2017). A miniature water surface jumping robot. IEEE Robotics and Automation Letters, 2, 1272–1279. https://doi.org/10.1109/LRA.2017.2662738

    Article  Google Scholar 

  80. Yan, J. H., Yang, K., Zhang, X. B., & Zhao, J. (2018). A new type large-scale water-jumping robot design and simulation. In IEEE international conference on real-time computing and robotics (RCAR), Kandima, Maldives (pp. 18399076). https://doi.org/10.1109/RCAR.2018.8621667

  81. Yan, J. H., Wang, T., Zhang, X. B., & Zhao, J. (2014). Structural design and dynamic analysis of biologically inspired water-jumping robot. In IEEE international conference on information & automation, IEEE, Hailar, China (pp. 14698962). https://doi.org/10.1109/ICInfA.2014.6932848

  82. Yan, J. H., Zhang, X. B., Yao, H. W., Yang, K. (2019). A robot jumping and gliding on the water surface. China Patent, No. 110979662A.

  83. Finn, R. (1986). Equilibrium capillary surfaces (pp. 367–368). New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (No. 11972170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Zhou.

Ethics declarations

Conflict of Interest

We declare that there is not any commercial or associative interest that represents a conflict of interest in connexion with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Shen, M., Ma, Z. et al. Research Progress on Bionic Water Strider Robots. J Bionic Eng 21, 635–652 (2024). https://doi.org/10.1007/s42235-023-00467-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00467-2

Keywords

Navigation