Skip to main content
Log in

One Step and In Situ Synthesis of Edible Lubricant-infused Surface Using All-in-one Solution

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Edible Lubricant-Infused Surface (ELIS) was fabricated through antisolvent method by adding ethyl oleate (lubricant/antisolvent), ethanol (solvent) and shellac (solute/base layer of ELIS) into an all-in-one solution to in-situ prepare ELIS through single step of solvent evaporation. The ELIS comprising sub-micro- to micro-scaled shellac particles shows water and food liquid slippery, transparency, stability against abrasion and lubricant retaining ability against sheer force. Using all edible material to fabricated ELIS is a more efficient route for application when compared with other Lubricant-Infused Surface (LIS). Traditional fabrication for LIS included steps such as: base layer fabrication, lubricant infusion, excess lubricant removal, UV light treatment and chemical etching. The method proposed in this article could further simplify the preparation to an all-in-one solution and simplify the synthesis process to only 60-degree heating. Furthermore, Shellac ELIS coating could withstand abrasion and hold performance when compared with other ELIS coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1:
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this article are available in Journal of Bionic Engineering websites (Springer) with the DOI of the article.

References

  1. Zhang, P. F., Chen, H. W., Zhang, L. W., Ran, T., & Zhang, D. Y. (2015). Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns. Applied Surface Science, 355, 1083–1090.

  2. Wang, N., Xiong, D. S., Pan, S., Wang, K., Shi, Y., & Deng, Y. L. (2017). Robust superhydrophobic coating and the anti-icing properties of its lubricants-infused-composite surface under condensing condition. New Journal of Chemistry, 41(4), 1846–1853.

    Article  Google Scholar 

  3. Liu, Q., Yang, Y., Huang, M., Zhou, Y. X., Liu, Y. Y., & Liang, X. D. (2015). Durability of a lubricant-infused electrospray silicon rubber surface as an anti-icing coating. Applied Surface Science, 346, 68–76.

  4. Jing, X. S., & Guo, Z. G. (2019). Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability. Nanoscale, 11(18), 8870–8881.

    Article  Google Scholar 

  5. Li, H., Peng, Y. J., Zhang, K., Li, P. C., Xin, L., Yin, X. L., & Yu, S. R. (2022). Spontaneous self-healing bio-inspired lubricant-infused coating on pipeline steel substrate with reinforcing anti-corrosion, anti-fouling, and anti-scaling properties. Journal of Bionic Engineering, 19(6), 1601–1614.

    Article  Google Scholar 

  6. Zhang, M. L., Yu, J., Chen, R. R., Liu, Q., Liu, J. Y., Song, D. L., . . . Wang, J. (2019). Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances. Journal of Alloys and Compounds, 803, 51–60.

  7. Zhang, L., Zhang, C., Tang, J. R., Hao, B., & Wang, M. Y. (2021). Investigation of anticorrosive performance of oil-infused slippery and superhydrophobic brass surfaces by laser texturing. Journal of Bionic Engineering, 18(5), 1157–1167.

    Article  Google Scholar 

  8. Wang, D., Guo, Z., & Liu, W. (2019). Bioinspired edible lubricant-infused surface with liquid residue reduction properties. Res (Wash D C), 2019, 1649427. https://doi.org/10.34133/2019/1649427

    Article  Google Scholar 

  9. Wang, D., & Guo, Z. (2020). A bioinspired lubricant infused surface with transparency, hot liquid boiling resistance and long-term stability for food applications. New Journal of Chemistry, 44(11), 4529–4537. https://doi.org/10.1039/c9nj06277g

    Article  Google Scholar 

  10. Williams, H., & Wikstrom, F. (2011). Environmental impact of packaging and food losses in a life cycle perspective: a comparative analysis of five food items. Journal of Cleaner Production, 19(1), 43–48.

    Article  Google Scholar 

  11. Hsu, S., Thiel, C. L., Mello, M. J., & Slutzman, J. E. (2020). Dumpster diving in the emergency department: quantity and characteristics of waste at a level I trauma center. Western Journal of Emergency Medicine, 21(5), 1211–1217.

    Article  Google Scholar 

  12. Ellis, D. A., Mabury, S. A., Martin, J. W., & Muir, D. C. G. (2001). Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature, 412(6844), 321–324.

    Article  Google Scholar 

  13. Suja, F., Pramanik, B. K., & Zain, S. M. (2009). Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: a review paper. Water Science and Technology, 60(6), 1533–1544.

    Article  Google Scholar 

  14. Johansson, N., Fredriksson, A., & Eriksson, P. (2008). Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology, 29(1), 160–169.

    Article  Google Scholar 

  15. Togasawa, R., Ohnuki, F., & Shiratori, S. (2018). A biocompatible slippery surface based on a boehmite nanostructure with omniphobicity for hot liquids and boiling stability. Acs Applied Nano Materials, 1(4), 1758–1765.

    Article  Google Scholar 

  16. Togasawa, R., Tenjimbayashi, M., Matsubayashi, T., Moriya, T., Manabe, K., & Shiratori, S. (2018). A fluorine-free slippery surface with hot water repellency and improved stability against boiling. Acs Appl Materials Interfaces, 10(4), 4198–4205.

    Article  Google Scholar 

  17. Liu, B.-Y., Xue, C.-H., An, Q.-F., Jia, S.-T., & Xu, M.-M. (2019). Fabrication of superhydrophobic coatings with edible materials for super-repelling non-Newtonian liquid foods. Chemical Engineering Journal, 371, 833–841. https://doi.org/10.1016/j.cej.2019.03.222

    Article  Google Scholar 

  18. Wang, W., Lockwood, K., Boyd, L. M., Davidson, M. D., Movafaghi, S., Vahabi, H., & Kota, A. K. (2016). Superhydrophobic coatings with edible materials. ACS Appl Materials Interfaces, 8(29), 18664–18668.

  19. Zhao, X., Hu, T., & Zhang, J. (2018). Superhydrophobic coatings with high repellency to daily consumed liquid foods based on food grade waxes. Journal of Colloid and Interface Science, 515, 255–263.

    Article  Google Scholar 

  20. Shen T, Fan S, Li Y, Xu G, Fan W (2020) Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue. Materials (Basel), 13(15).

  21. Fang, W., Zhao, L., He, X., Chen, H., Li, W. X., Zeng, X. H., et al. (2020). Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation. Renewable Energy, 151, 1067–1075.

  22. Zhang, Y. W., Bi, J. R., Wang, S. Q., Cao, Q. P., Li, Y., Zhou, J. H., & Zhu, B. W. (2019). Functional food packaging for reducing residual liquid food: thermo-resistant edible super-hydrophobic coating from coffee and beeswax. Journal of Colloid and Interface Science, 533, 742–749.

    Article  Google Scholar 

  23. Yang, C., Zhu, Y., Wang, Y., Fu, H., Deng, X., Yue, H., & Liang, B. (2019). Preparation of edible superhydrophobic Fe foil with excellent stability and durability and its applications in food containers with little residue. New Journal of Chemistry, 43(7), 2908–2919. https://doi.org/10.1039/c8nj05967e

  24. Zhang, W., Lu, P., Qian, L., & Xiao, H. (2014). Fabrication of superhydrophobic paper surface via wax mixture coating. Chemical Engineering Journal, 250, 431–436. https://doi.org/10.1016/j.cej.2014.04.050

    Article  Google Scholar 

  25. Celik, N., Torun, I., Ruzi, M., Esidir, A., & Onses, M. S. (2020). Fabrication of robust superhydrophobic surfaces by one-step spray coating: evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chemical Engineering Journal, 396, 125230.

  26. Torun, I., Ruzi, M., Er, F., & Onses, M. S. (2019). Superhydrophobic coatings made from biocompatible polydimethylsiloxane and natural wax. Progress in Organic Coatings, 136. https://doi.org/10.1016/j.porgcoat.2019.105279

  27. Shank, F. R. (1989). Shellac and shellac wax: proposed affirmation of GRAS status with specific limitations as direct human food ingredients. Federal Register, 54, 31055–31059.

    Google Scholar 

  28. Al-Obaidy, S. S. M., Halbus, A. F., Greenway, G. M., & Paunov, V. N. (2019). Boosting the antimicrobial action of vancomycin formulated in shellac nanoparticles of dual-surface functionality. Journal of Materials Chemistry B, 7(19), 3119–3133.

    Article  Google Scholar 

  29. Doost, A. S., Muhammad, D. R. A., Stevens, C. V., Dewettinck, K., & Van der Meeren, P. (2018). Fabrication and characterization of quercetin loaded almond gum-shellac nanoparticles prepared by antisolvent precipitation. Food Hydrocolloids, 83, 190–201.

    Article  Google Scholar 

  30. Hannu Teisala, Philipp Baumli, Stefan A. L. Weber, Doris Vollmer, & Butt, H.-J. r. (2020). Grafting Silicone at Room Temperature - a Transparent, Scratchresistant Nonstick Molecular Coating. Langmuir, 36, 4416−4431

  31. Wooh, S., & Butt, H. J. (2017). A Photocatalytically active lubricant-impregnated surface. Angewandte Chemie (International ed. in English), 56(18), 4965–4969.

    Article  Google Scholar 

  32. Wang J, Wang L, Sun N, Tierney R, Li H, Corsetti M, Wong T-S (2019) Viscoelastic solid-repellent coatings for extreme water saving and global sanitation. Nat Sustain, 2(12), 1097–1105. https://doi.org/10.1038/s41893-019-0421-0

  33. Dalvi, S. V., & Dave, R. N. (2009). Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation. Industrial and Engineering Chemistry Research, 48(16), 7581–7593.

    Article  Google Scholar 

  34. Joye, I. J., & McClements, D. J. (2013). Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends in Food Science & Technology, 34(2), 109–123.

    Article  Google Scholar 

  35. Davidov-Pardo, G., Joye, I. J., & McClements, D. J. (2015). Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization. Food Hydrocolloids, 45, 309–316.

    Article  Google Scholar 

  36. Thorat, A. A., & Dalvi, S. V. (2012). Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chemical Engineering Journal, 181, 1–34.

    Article  Google Scholar 

  37. Gardner, W. H., & Whitmore, W. F. (1929). Nature and constitution of Shellac I-preliminary investigation of the action of organic solvents. Industrial and Engineering Chemistry, 21(2), 226–229.

    Article  Google Scholar 

  38. Badawy, S. I. F., Gawronski, A. J., & Alvarez, F. J. (2001). Application of sorption–desorption moisture transfer modeling to the study of chemical stability of a moisture sensitive drug product in different packaging configurations. International Journal of Pharmaceutics, 223(1–2), 1–13.

    Article  Google Scholar 

  39. Patel, A. R., Schatteman, D., De Vos, W. H., & Dewettinck, K. (2013). Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Advances, 3(16), 5324–5327.

    Article  Google Scholar 

  40. Kakran, M., Sahoo, N. G., Tan, I. L., & Li, L. (2012). Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. Journal of Nanoparticle Research, 14(3).

  41. Wang, D. H., Huang, J. X., & Guo, Z. G. (2020). Tomato-lotus inspired edible superhydrophobic artificial lotus leaf. Chemical Engineering Journal, 400, 125883. https://doi.org/10.1016/j.cej.2020.125883

Download references

Acknowledgements

The authors thank The National Key R&D Program of China (No. 2022YFB3806401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxia Huang or Zhiguang Guo.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6347 KB)

Supplementary file2 (MP4 7164 KB)

Supplementary file3 (MP4 16756 KB)

Supplementary file4 (MP4 7864 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Huang, J. & Guo, Z. One Step and In Situ Synthesis of Edible Lubricant-infused Surface Using All-in-one Solution. J Bionic Eng 20, 1879–1890 (2023). https://doi.org/10.1007/s42235-023-00379-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00379-1

Keywords

Navigation