Skip to main content
Log in

Design, Implementation and Control of an Amphibious Spherical Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

We proposed and implemented a leg-vector water-jet actuated spherical robot and an underwater adaptive motion control system so that the proposed robot could perform exploration tasks in complex environments. Our aim was to improve the kinematic performance of spherical robots. We developed mechanical and dynamic models so that we could analyze the motions of the robot on land and in water. The robot was equipped with an Inertial Measurement Unit (IMU) that provided inclination and motion information. We designed three types of walking gait for the robot, with different stabilities and speeds. Furthermore, we proposed an online adjustment mechanism to adjust the gaits so that the robot could climb up slopes in a stable manner. As the system function changed continuously as the robot moved underwater, we implemented an online motion recognition system with a forgetting factor least squares algorithm. We proposed a generalized prediction control algorithm to achieve robust underwater motion control. To ensure real-time performance and reduce power consumption, the robot motion control system was implemented on a Zynq-7000 System-on-Chip (SoC). Our experimental results show that the robot’s motion remains stable at different speeds in a variety of amphibious environments, which meets the requirements for applications in a range of terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Shi, L.W., Pan, S.W., Guo, S.X., Tang, K., Guo, P., Xiao, R., & He, Y.L. (2016). Design and evaluation of quadruped gaits for amphibious spherical robots. In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 13–18). IEEE

  2. Wu, Z. X., Yu, J. Z., Yuan, J., & Tan, M. (2019). Towards a gliding robotic dolphin: Design, modeling, and experiments. IEEE/ASME Transactions on Mechatronics, 24(1), 260–270.

    Article  Google Scholar 

  3. Wang, W., Dai, X., Li, L., Gheneti, B. H., Ding, Y., Yu, J. Z., & Xie, G. M. (2018). Three-dimensional modeling of a fin-actuated robotic fish with multimodal swimming. IEEE/ASME Transactions on Mechatronics, 23(4), 1641–1652.

    Article  Google Scholar 

  4. Shi, Q., Ishii, H., Sugahara, Y., Takanishi, A., Huang, Q., & Fukuda, T. (2014). Design and control of a biomimetic robotic rat for interaction with laboratory rats. IEEE/ASME Transactions on Mechatronics, 20(4), 1832–1842.

    Article  Google Scholar 

  5. Shi, Q., Gao, Z. H., Jia, G. L., & Li, C. (2021). Implementing rat-like motion for a small-sized biomimetic robot based on extraction of key movement joints. IEEE Transactions on Robotics, 37(3), 747–762.

    Article  Google Scholar 

  6. Shi, Q., Gao, J. H., Wang, S. J., Quan, X. L., Jia, G. L., Huang, Q., & Fukuda, T. (2022). Development of a small-sized quadruped robotic rat capable of multimodal motions. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2022.3159188

    Article  Google Scholar 

  7. Li, W. B., Zhang, W. M., Zou, H. X., Peng, Z. K., & Meng, G. (2018). A fast rolling soft robot driven by dielectric elastomer. IEEE/ASME Transactions on Mechatronics, 23(4), 1630–1640.

    Article  Google Scholar 

  8. Guo, X., Ma, S. G., Li, B., & Fang, Y. C. (2018). A novel serpentine gait generation method for snakelike robots based on geometry mechanics. IEEE/ASME Transactions on Mechatronics, 23(3), 1249–1258.

    Article  Google Scholar 

  9. Shi, Q., Li, C., Li, K., Huang, Q., Ishii, H., Takanishi, A., & Fukuda, T. (2018). A modified robotic rat to study rat-like pitch and yaw movements. IEEE/ASME Transactions on Mechatronics, 23(5), 2448–2458.

    Article  Google Scholar 

  10. Tanaka, M., Nakajima, M., Suzuki, Y., & Tanaka, K. (2018). Development and control of articulated mobile robot for climbing steep stairs. IEEE/ASME Transactions on Mechatronics, 23(2), 531–541.

    Article  Google Scholar 

  11. Cui, L., Cheong, P., Adams, R., & Johnson, T. (2014). AmBot: A bio-inspired amphibious robot for monitoring the swan-canning estuary system. Journal of Mechanical Design, 136(11).

  12. Vogel, A. R., Kaipa, K. N., Krummel, G. M., Bruck, H. A., & Gupta, S. K. (2014). Design of a compliance assisted quadrupedal amphibious robot. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2378–2383). IEEE.

  13. Zhong, B., Zhou, Y. C., Li, X. X., Xu, M., & Zhang, S. W. (2016). Locomotion performance of the amphibious robot on various terrains and underwater with flexible flipper legs. Journal of Bionic Engineering, 13(4), 525–536.

    Article  Google Scholar 

  14. Kaznov, V., & Seeman, M. (2010). Outdoor navigation with a spherical amphibious robot. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5113–5118). IEEE.

  15. Jia, L.C., Hu, Z.Q., Geng, L.G., Yang, Y., & Wang, C. (2016). The concept design of a mobile amphibious spherical robot for underwater operation. In 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 411–415). IEEE.

  16. Guo, S.X., Mao, S.L., Shi, L.W., & Li, M.X. (2012). Development of an amphibious mother spherical robot used as the carrier for underwater microrobots. In 2012 ICME International Conference on Complex Medical Engineering (CME) (pp. 758–762). IEEE.

  17. Guo, S. X., He, Y. L., Shi, L. W., Pan, S. W., Xiao, R., Tang, K., & Guo, P. (2018). Modeling and experimental evaluation of an improved amphibious robot with compact structure. Robotics and Computer-Integrated Manufacturing, 51, 37–52.

    Article  Google Scholar 

  18. Guo, S. X., Pan, S. W., Li, X. Q., Shi, L. W., Zhang, P. Y., Guo, P., & He, Y. L. (2017). A system on chip-based real-time tracking system for amphibious spherical robots. International Journal of Advanced Robotic Systems, 14(4), 1729881417716559.

    Article  Google Scholar 

  19. Guo, S. X., Pan, S. W., Shi, L. W., Guo, P., He, Y. L., & Tang, K. (2017). Visual detection and tracking system for an amphibious spherical robot. Sensors, 17(4), 1–21.

    Article  Google Scholar 

  20. Yi, Y., Geng, Z., Jianqing, Z., Siyuan, C., & Mengyin, F. (2015). Design, modeling and control of a novel amphibious robot with dual-swing-legs propulsion mechanism. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 559–566). IEEE.

  21. Yue, M., Liu, B. Y., An, C., & Sun, X. J. (2014). Extended state observer-based adaptive hierarchical sliding mode control for longitudinal movement of a spherical robot. Nonlinear Dynamics, 78(2), 1233–1244.

    Article  MathSciNet  Google Scholar 

  22. Karavaev, Y. L., & Kilin, A. A. (2015). The dynamics and control of a spherical robot with an internal omniwheel platform. Regular and Chaotic Dynamics, 20(2), 134–152.

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, J., Guo, S. X., & Li, L. G. (2017). Design and characteristic evaluation of a novel amphibious spherical robot. Microsystem Technologies, 23(6), 1999–2012.

    Article  MathSciNet  Google Scholar 

  24. Li, M. X., Guo, S. X., Hirata, H., & Ishihara, H. (2017). A roller-skating/walking mode-based amphibious robot. Robotics and Computer-Integrated Manufacturing, 44, 17–29.

    Article  Google Scholar 

  25. Pan, S. W., Shi, L. W., & Guo, S. X. (2015). A kinect-based real-time compressive tracking prototype system for amphibious spherical robots. Sensors, 15(4), 8232–8252.

    Article  Google Scholar 

  26. Guo, S. X., He, Y. L., Shi, L. W., Pan, S. W., Tang, K., Xiao, R., & Guo, P. (2017). Modal and fatigue analysis of critical components of an amphibious spherical robot. Microsystem Technologies, 23(6), 2233–2247.

    Article  Google Scholar 

  27. He, Y. L., Shi, L. W., Guo, S. X., Pan, S. W., & Wang, Z. (2016). Preliminary mechanical analysis of an improved amphibious spherical father robot. Microsystem Technologies, 22(8), 2051–2066.

    Article  Google Scholar 

  28. Guo, J., Wu, G.Q, & Guo, S.X. (2015). Fuzzy PID algorithm-based motion control for the spherical amphibious robot. In 2015 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 1583–1588). IEEE.

  29. Wang, Z., Guo, S.X., Shi, L.W., Pan, S.W., & He, Y.L. (2014). The application of PID control in motion control of the spherical amphibious robot. In 2014 IEEE International Conference on Mechatronics and Automation (pp. 1901–1906). IEEE.

  30. An, L., Heng, W., & YongZheng, L. (2013). Gait transition of quadruped robot using rhythm control and stability analysis. In 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2535–2539). IEEE.

  31. Li, M. X., Guo, S. X., Hirata, H., & Ishihara, H. (2015). Design and performance evaluation of an amphibious spherical robot. Robotics and Autonomous Systems, 64, 21–34.

    Article  Google Scholar 

  32. Pan, S.W., Shi, L.W., Guo, S.X., Guo, P., He, Y.L., & Xiao, R. (2015). A low-power SoC-based moving target detection system for amphibious spherical robots. In 2015 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 1116–1121). IEEE.

  33. Prasad, B., Agrawal, A., Viswanathan, V., Chowdhury, A. R., Kumar, R., & Panda, S. K. (2015). A visually guided spherical underwater robot. In 2015 IEEE Underwater Technology (UT) (pp. 1–6). IEEE.

  34. Hernández-Alvarado, R., García-Valdovinos, L. G., Salgado-Jiménez, T., Gómez-Espinosa, A., & Fonseca-Navarro, F. (2016). Neural network-based self-tuning PID control for underwater vehicles. Sensors, 16(9), 1429.

    Article  Google Scholar 

  35. Shi, Q., Yang, Z., Guo, Y. N., Wang, H. P., Sun, L. N., Huang, Q., & Fukuda, T. (2017). A vision-based automated manipulation system for the pick-up of carbon nanotubes. IEEE/ASME Transactions on Mechatronics, 22(2), 845–854.

    Article  Google Scholar 

  36. Shi, Q., Li, C., Wang, C. B., Luo, H. B., Huang, Q., & Fukuda, T. (2017). Design and implementation of an omnidirectional vision system for robot perception. Mechatronics, 41, 58–66.

    Article  Google Scholar 

  37. Krug, R., & Dimitrov, D. (2015). Model predictive motion control based on generalized dynamical movement primitives. Journal of Intelligent & Robotic Systems, 77(1), 17–35.

    Article  Google Scholar 

  38. Tran, Q. N., Özkan, L., & Backx, A. (2015). Generalized predictive control tuning by controller matching. Journal of Process Control, 25, 1–18.

    Article  Google Scholar 

  39. Xing, H. M., Shi, L. W., Tang, K., Guo, S. X., Hou, X. H., Liu, Y., & Hu, Y. (2019). Robust RGB-D camera and IMU fusion-based cooperative and relative close-range localization for multiple turtle-inspired amphibious spherical robots. Journal of Bionic Engineering, 16(3), 442–454.

    Article  Google Scholar 

  40. Shi, L. W., Hu, Y., Su, S. X., Guo, S. X., Xing, H. M., Hou, X. H., & Xia, D. B. (2020). A fuzzy PID algorithm for a novel miniature spherical robots with three-dimensional underwater motion control. Journal of Bionic Engineering, 17(5), 959–969.

    Article  Google Scholar 

  41. Xing, H. M., Guo, S. X., Shi, L. W., He, Y. L., Su, S. X., Chen, Z., & Hou, X. H. (2018). Hybrid locomotion evaluation for a novel amphibious spherical robot. Applied Sciences, 8(2), 156.

    Article  Google Scholar 

  42. Shi, L. W., Guo, S. X., Mao, S. L., Yue, C. F., Li, M. X., & Asaka, K. (2013). Development of an amphibious turtle-inspired spherical mother robot. Journal of Bionic Engineering, 10(4), 446–455.

    Article  Google Scholar 

  43. Hou, X. H., Guo, S. X., Shi, L. W., Xing, H. M., Liu, Y., Liu, H. K., & Li, Z. (2019). Hydrodynamic analysis-based modeling and experimental verification of a new water-jet thruster for an amphibious spherical robot. Sensors, 19(2), 259.

    Article  Google Scholar 

  44. Xing, H. M., Shi, L. W., Hou, X. H., Liu, Y., Hu, Y., Xia, D. B., Li, Z., & Guo, S. X. (2021). Design, modeling and control of a miniature bio-inspired amphibious spherical robot. Mechatronics, 77(1), 102574.

    Article  Google Scholar 

  45. Shi, L. W., Hu, Y., Su, S. X., Guo, S. X., Xing, H. M., Hou, X. H., Liu, Y., Chen, Z., Li, Z., & Xia, D. B. (2020). A fuzzy PID algorithm for a novel miniature spherical robots with three-dimensional underwater motion control. Journal of Bionic Engineering, 17(5), 959–969.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61773064, 61503028). Xianqiang Bao, Xui Xiao, Zhan Chen, Yanlin He, and Xiaojuan Cai also contributed to the fabrication work of this amphibious spherical robot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Shi.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest pertaining to this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Zhang, Z., Li, Z. et al. Design, Implementation and Control of an Amphibious Spherical Robot. J Bionic Eng 19, 1736–1757 (2022). https://doi.org/10.1007/s42235-022-00229-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00229-6

Keywords

Navigation