Skip to main content
Log in

Design and Technical Development of Wall-Climbing Robots: A Review

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Once working at heights is dangerous, it is a significant accident. These accidents brought substantial economic losses and caused a large number of casualties. Therefore, it is essential to use wall-climbing robots to replace manual work at heights. The design of the wall-climbing robot is inspired by the climbing action of insects or animals. An intelligent bionic robot device can carry special equipment to operate on the wall and perform some dangerous operations instead of firefighters or inspection personnel more efficiently. The scope of application is vast. This paper firstly summarizes the research progress of wall-climbing robots with three different moving methods: wheel-climbing, crawler-based, and leg-footed robots; summarizes the applications and breakthroughs of four adsorption technologies: negative pressure, magnetic force, bionic and electrostatic; discusses the application of motion control algorithms in wall-climbing robots. Secondly, the advantages and disadvantages of different migration modes and adsorption methods are pointed out. The distribution and advantages of the combined application of different migration modes and adsorption methods are analyzed. In addition, the future development trend of wall-climbing robots and the promoting effect of bionic technology development on wall-climbing robots are proposed. The content of this paper will provide helpful guidance for the research of wall-climbing robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data and Materials Availability

All data are available in the main text or supplementary materials.

References

  1. International Federation of Robotics. Service robot statistics. http://www.ifr.org/servicerobots/statistics/.

  2. Nansai, S., & Elara, M. R. (2016). A survey of wall climbing robots: Recent advances and challenges. Robotics, 5, 2218–6581.

    Google Scholar 

  3. Brusell, A., Andrikopoulos, G., & Nikolakopoulos, G. (2016). A survey on pneumatic wall-climbing robots for inspection. In 2016 24th Mediterranean conference on control and automation. Athens, Greece, pp. 220–225.

  4. Schmidt, D., & Berns, K. (2013). Climbing robots for maintenance and inspections of vertical structures A survey of design aspects and technologies. Robotics and Autonomous Systems, 61, 1288–1305.

    Google Scholar 

  5. Xu, J. J., Xu, L. S., Liu, J. F., Li, X. H., & Wu, X. A. (2018) Survey on bioinspired adhesive methods and design and implementation of a multi-mode biomimetic wall-climbing robot. In 2018 IEEE/ASME International conference on advanced intelligent mechatronics. Auckland, New Zealand, pp. 688–693.

  6. Seo, T., Jeon, Y., Park, C., & Kim, J. (2019). Survey on glass and facade-cleaning robots: Climbing mechanisms, cleaning methods, and applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 367–376.

    Google Scholar 

  7. Nishi, A., Wakasugi, Y., & Watanabe, K. (1986). Design of a robot capable of moving on a vertical wall. Advanced Robotics, 1, 33–45.

    Google Scholar 

  8. Nishi, A. (1996). Development of wall-climbing robots. Computers & Electrical Engineering, 22, 123–149.

    Google Scholar 

  9. Nishi, A., Wakasugi, Y., & Watanabe, K. (2012). Design of a robot capable of moving on a vertical wall. Advanced Robotics, 1, 33–45.

    Google Scholar 

  10. Schmidt, D., & Berns, K. (2013). Climbing robots for maintenance and inspections of vertical structures—A survey of design aspects and technologies. Robotics and Autonomous Systems, 61, 1288–1305.

    Google Scholar 

  11. Guan, D., Yan, L., Yang, Y. B., & Xu, W. F. (2014). A small climbing robot for the intelligent inspection of nuclear power plants. In 2014 4th IEEE international conference on information science and technology. Shenzhen, P.R. China, pp. 484–487.

  12. Sattar, T. P., Hilton, P., & Howlader, M. O. F. (2017). Deployment of laser cutting head with wall climbing robot for nuclear decommissioning. In Advances in cooperative robotics. London, England, pp. 725–732.

  13. Kim, D., Kim, Y. S., Noh, K., Jang, M., & Kim, S. (2020). Wall climbing robot with active sealing for radiation safety of nuclear power plants. Nuclear Science and Engineering, 194, 1162–1174.

    Google Scholar 

  14. Hirai, M., Hirose, S., & Lee, W. (2013). Gunryu III: Reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor. Advanced Robotics, 27, 1099–1111.

    Google Scholar 

  15. Gao, X. S., Xu, D. G., Wang, Y., Pan, H. H., & Shen, W. M. (2009). Multifunctional robot to maintain boiler water-cooling tubes. Robotica, 27, 941–948.

    Google Scholar 

  16. Maneewarn, T., & Thung-od, K. (2015). ICP-EKF localization with adaptive covariance for a boiler inspection robot. In Proceedings of the 2015 7th IEEE international conference on cybernetics and intelligent systems. Angkor Wat, Cambodia, pp. 216–221.

  17. Gui, Z. C., Deng, Y. J., Sheng, Z. X., Xiao, T. J., Li, Y. L., Zhang, F., Dong, N., & Wu, J. D. (2014). Design and experimental verification of an intelligent wall-climbing welding robot system. Industrial Robot: An International Journal, 41, 500–507.

    Google Scholar 

  18. Feng, X. B., Tian, W., Wei, R., Pan, B. W., Chen, Y., & Chen, S. Y. (2020). Application of a wall-climbing, welding robot in ship automatic welding. Journal of Coastal Research, 106, 609–613.

    Google Scholar 

  19. Wu, M. H., Pan, G., Zhang, T., Chen, S. B., Zhuang, F., & Zhao, Y. Z. (2013). Design and optimal research of a non-contact adjustable magnetic adhesion mechanism for a wall-climbing welding robot. International Journal of Advanced Robotic Systems, 10, 63.

    Google Scholar 

  20. Liu, X. G., Zhou, Y., Jiang, X. M., & Cao, L. C. (2018). Control system of a wall climbing robot for automatic welding. In 2018 5th International conference on information science and control engineering. Zhengzhou, P. R. China, pp. 670–674.

  21. Wang, Z. G., Zhang, K., Chen, Y. X., Luo, Z. F., & Zheng, J. (2017). A real-time weld line detection for derusting wall-climbing robot using dual cameras. Journal of Manufacturing Processes, 27, 76–86.

    Google Scholar 

  22. Zhang, K., Chen, Y. X., Gui, H., Li, D. Y., & Li, Z. G. (2018). Identification of the deviation of seam tracking and weld cross type for the derusting of ship hulls using a wall-climbing robot based on three-line laser structural light. Journal of Manufacturing Processes, 35, 295–306.

    Google Scholar 

  23. Zhang, X. J., Zhang, X., Zhang, M. L., Sun, L. Y., & Li, M. H. (2020). Optimization design and flexible detection method of wall-climbing robot system with multiple sensors integration for magnetic particle testing. Sensors, 20, 4582.

    Google Scholar 

  24. Anh Vu, L., Phone Thiha, K., Veerajagadheswar, P., Muthugala, M. A. V. J., Elara, M. R., Kumar, M., & Nguyen Huu Khanh, N. (2021). Reinforcement learning-based optimal complete water-blasting for autonomous ship hull corrosion cleaning system. Ocean Engineering, 220, 108477.

    Google Scholar 

  25. Wu, X. W., Wang, C. Q., & Hua, S. Y. (2020). Predictor-based adaptive feedback control for a class of systems with time delay and its application to an aircraft skin inspection robot. Iet Control Theory and Applications, 14, 763–773.

    MathSciNet  Google Scholar 

  26. Zhang, F. F., Sun, X. R., Li, Z. P., Mohsin, I., Wei, Y. A., & He, K. (2020). Influence of processing parameters on coating removal for high pressure water jet technology based on wall-climbing robot. Applied Sciences-Basel, 10, 1862.

    Google Scholar 

  27. Liu, Y., Dai, Q. F., & Liu, Q. C. (2013) Adhesion-adaptive control of a novel bridge-climbing robot. In 2013 IEEE 3rd annual international conference on cyber technology in automation, control and intelligent systems. Nanjing, P.R. China, pp. 102–107.

  28. Chang, Q., Luo, X., Qiao, Z. X., & Li, Q. (2019). Design and motion planning of a biped climbing robot with redundant manipulator. Applied Sciences-Basel, 9, 3009.

    Google Scholar 

  29. Wang, R., & Kawamura, Y. (2016). Development of climbing robot for steel bridge inspection. Industrial Robot-the International Journal of Robotics Research and Application, 43, 429–447.

    Google Scholar 

  30. Zhu, D., Guo, J., Cho, C., Wang, Y., & Lee, K.-M. (2012). Wireless mobile sensor network for the system identification of a space frame bridge. Ieee-Asme Transactions on Mechatronics, 17, 499–507.

    Google Scholar 

  31. Wang, M. T., Tan, S. L., Ding, J. J., & Yan, L. W. (2007) Complete coverage path planning of wall-cleaning robot using visual sensor. In ICEMI 2007: Proceedings of 2007 8th international conference on electronic measurement & instruments, Vol IV. Xian, P.R. China, pp. 159–164.

  32. Soeda, T., Okada, N., Kiguchi, K., & Arob. (2013) A simple wall-climbing mechanism for a window cleaning robot. In Proceedings of the eighteenth international symposium on artificial life and robotics. Daejeon, South Korea, pp. 492–495.

  33. Kim, T., Jeon, Y., Yoo, S., Kim, K., Kim, H. S., & Kim, J. (2017). Development of a wall-climbing platform with modularized wall-cleaning units. Automation in Construction, 83, 1–18.

    Google Scholar 

  34. Deng, J. X., Chen, J., & Wang, D. C. (2019). Mechanism design and mechanical analysis of multi-suction sliding cleaning robot used in glass curtain wall. Computer Systems Science and Engineering, 34, 201–206.

    Google Scholar 

  35. Vega-Heredia, M., Elara, M. R., Wen, T. Y., ’Aisyah, J. S., Vengadesh, A., Ghanta, S., & Vinu, S. (2019). Design and modelling of a modular window cleaning robot. Automation in Construction, 103, 268–278.

    Google Scholar 

  36. Anand, T., Kushwaha, S. K., Roslin, S. E., & Nandhitha, N. M. (2017). Flux controlled BLDC motor for automated glass cleaning robot. In 2017 Third international conference on science technology engineering & management. Chennai, India, pp. 955–959.

  37. Inoue, F., Honjo, A., Makino, T., & Kwon, S. (2018). Inspection robot system using duct fan and deterioration estimation of building wall that can be applied even in disaster. In 2018 18th international conference on control, automation and systems. South Korea, pp. 331–334.

  38. Ohashi, Y., Kojima, S., Ohno, K., Okada, Y., Hamada, R., Suzuki, T., Tadokoro, S., & IEEE. (2017). Attempt at climbing of spiral staircase for tracked vehicles using reaction force of stairs' handrail. In 2017 IEEE/SICE international symposium on system integration, Taipei, Taiwan. Pp. 456–462.

  39. Dong, W. G., Wang, H. G., Liu, A. H., & Li, Z. H. (2012). Design and analysis of a novel wall-climbing robot mechanism. In Mechatronics and information technology, Pts 1 and 2. Shenyang, P.R. China, pp. 346–351.

  40. Altaf, M., Ahmad, E., Xu, Y., Liu, R., Li, Y., & Na, H. (2017). Design of a climbing robot platform with protection device. International Journal of Advanced Robotic Systems. https://doi.org/10.1177/1729881417716382.

    Article  Google Scholar 

  41. Wagner, M., Chen, X. Q., Nayyerloo, M., Wang, W. H., & Chase, J. G. (2008). A novel wall climbing robot based on bernoulli effect. In Proceedings of 2008 IEEE/ASME international conference on mechatronic and embedded systems and applications. Beijing, P.R. China, pp. 210–+.

  42. Journee, M., Chen, X. Q., Robertson, J., Jermy, M., & Sellier, M. (2011). An investigation into improved non-contact adhesion mechanism suitable for wall climbing robotic applications. In IEEE international conference on robotics & automation. Shanghai, China.

  43. Wu, S., Li, M., Xiao, S., & Li, Y. (2006). A wireless distributed wall climbing robotic system for reconnaissance purpose. In IEEE international conference on mechatronics and automation. Luoyang, P.R. China, pp. 1308–+.

  44. Longo, D., & Muscato, G. (2006). The Alicia/sup 3/climbing robot: A three-module robot for automatic wall inspection. IEEE Robotics & Automation Magazine, 13, 42–50.

    Google Scholar 

  45. Song, Y. K., Lee, C. M., Koo, I. M., Tran, D. T., Moon, H., & Choi, H. R. (2008). Development of wall climbing robotic system for inspection purpose. In IEEE/RSJ international conference on intelligent robots and systems. Nice, France, pp. 1990–1995.

  46. Ishihara, H. (2017). Basic study on wall climbing root with magnetic passive wheels. In 2017 IEEE international conference on mechatronics and automation. Takamatsu, Japan, pp. 1964–1969.

  47. Zhou, Q., & Xin, L. (2018). Experimental investigation on climbing robot using rotation-flow adsorption unit. Robotics and Autonomous Systems, 105, 112–120.

    Google Scholar 

  48. Zhang, D. W., Li, Z. B., & Chen, J. P. (2012). Design and optimization of an omnidirectional permanent-magnetic wheeled wall-climbing microrobot with MEMS-based electromagnetic micromotors. Advanced Robotics, 26, 197–218.

    Google Scholar 

  49. Xu, Z. Y., Zhang, K., Zhu, X. P., & Shi, H. (2015). Design and optimization of magnetic wheel for wall climbing robot. In Robotic welding, intelligence and automation, Rwia'2014. Shanghai, P.R. China, pp. 619–629.

  50. Howlader, M. D. O. F. and Sattar, T. P. (2016). Design and optimization of permanent magnet based adhesion module for robots climbing on reinforced concrete surfaces. In Intelligent systems and applications. London, England, pp. 153–171.

  51. Liang, P., Gao, X. S., Zhang, Q. F., Gao, R., Li, M. K., Xu, Y. X., & Zhu, W. (2021). Design and stability analysis of a wall-climbing robot using propulsive force of propeller. Symmetry-Basel, 13, 37.

    Google Scholar 

  52. Song, W., Jiang, H. J., Wang, T., Ji, D. X., & Zhu, S. Q. (2018). Design of permanent magnetic wheel-type adhesion-locomotion system for water-jetting wall-climbing robot. Advances in Mechanical Engineering. https://doi.org/10.1177/1687814018787378.

    Article  Google Scholar 

  53. Wagner, M., Chen, X. Q., Nayyerloo, M., Wang, W. H., & Chase, J. G. (2008). A novel wall climbing robot based on bernoulli effect. In IEEE/ASME international conference on mechatronic and embedded systems and applications. Beijing, P.R. China, pp. 210–+.

  54. Custodio, J. A. and Wang, Y. F. (2008). A spoke-wheel based wall-climbing robot. In 2008 IEEE conference on robotics, automation, and mechatronics. Chengdu, P.R. China, pp. 265–270.

  55. Liu, J. F., Xu, L. S., Xu, J. J., Li, T., Chen, S. Q., Xu, H., Cheng, G. X., & Ceccarelli, M. (2020). Design, modeling and experimentation of a biomimetic wall-climbing robot for multiple surfaces. Journal of Bionic Engineering, 17, 523–538.

    Google Scholar 

  56. Kim, S. H., & Jeong, Y. S. (2013). Mobile image sensors for object detection using color segmentation. Cluster Computing—The Journal of Networks Software Tools and Applications, 16, 757–763.

    Google Scholar 

  57. Koo, I. M., Tran Duc, T., Lee, Y. H., Moon, H., Koo, J., Park, S. K., & Choi, H. R. (2013). Development of wall climbing robot system by using impeller type adhesion mechanism. Journal of Intelligent & Robotic Systems, 72, 57–72.

    Google Scholar 

  58. Ali, N., Zafar, U., Ahmad, S., Iqbal, J., & Khan, Z. H. (2017). LizBOT design and prototyping of a wireless controlled wall climbing surveillance robot. In 2017 international conference on communication technologies. Rawalpindi, Pakistan, pp. 210–215.

  59. Chashchukhin, V., Knyazkov, D., Knyazkov, M., & Nunuparov, A. (2017). Determining orientation of the aerodynamically adhesive wall climbing robot. In 2017 22nd international conference on methods and models in automation and robotics. Miedzyzdroje, Poland, pp. 1007–1012.

  60. Liu, K., Zhang, W. Z., & Zeng, P. (2007). Symmetrically centralized magnetic-wheel unit for wall-climbing robots. In Proceedings of the IASTED international conference on telematics. Wurzburg, Germany, pp. 247–+.

  61. Han, T. Y., & Qian, R. M. (2019). Research on wheel-wall gap calculation method for four-magnetic wheel wall-climbing robot walking on cylindrical tank. In 2019 world robot conference symposium on advanced robotics and automation. Beijing, P.R. China, pp. 86–90.

  62. Dian, S. Y., Fang, H. W., Zhao, T., Wu, Q., Hu, Y., Guo, R., & Li, S. C. (2021). Modeling and trajectory tracking control for magnetic wheeled mobile robots based on improved dual-heuristic dynamic programming. IEEE Transactions on Industrial Informatics, 17, 1470–1482.

    Google Scholar 

  63. Cai, J. N., He, K., Fang, H. T., Chen, H., Hu, S. J., & Zhou, W. (2017). The design of permanent-magnetic wheeled wall-climbing robot. In 2017 IEEE international conference on information and automation. Macau, P.R. China, pp. 604–608.

  64. Murphy, M. P., & Sitti, M. (2007). Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE/ASME Transactions on Mechatronics, 12, 330–338.

    Google Scholar 

  65. Murphy, M. P., Kute, C., Menguec, Y., & Sitti, M. (2011). Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. International Journal of Robotics Research, 30, 118–133.

    Google Scholar 

  66. Hariri, H. H., Koh, D. C. Y., Lim, H. C., Dharmawan, A. G., Van Duong, N., Soh, G. S., Foong, S., Bouffanais, R., Low, H. Y., & Wood, K. L. (2018). ORION-II: A miniature climbing robot with bilayer compliant tape for autonomous intelligent surveillance and reconnaissance. In 15th international conference on control, automation, robotics and vision (ICARCV). Singapore, Singapore, pp. 1621–1626.

  67. Daltorio, K. A., Wei, T. E., Gorb, S. N., Ritzimann, R. E., & Quinn, R. D. (2007) Passive foot design and contact area analysis for climbing Mini-Whegs (TM). In IEEE international conference on robotics and automation. Rome, Italy, pp. 1274–+.

  68. Nishikawa, Y., & Matsumoto, M. (2018). Lightweight indestructible soft robot. IEEJ Transactions on Electrical and Electronic Engineering, 13, 652–653.

    Google Scholar 

  69. Liu, Y. W., Sun, S. M., Wu, X., & Mei, T. (2015). A wheeled wall-climbing robot with bio-inspired spine mechanisms. Journal of Bionic Engineering, 12, 17–28.

    Google Scholar 

  70. Yoshida, Y., & Ma, S. (2010). Design of a wall-climbing robot with passive suction cups. In IEEE, pp. 1513–1518.

  71. Kim, H., Kim, D., Yang, H., Lee, K., Seo, K., Chang, D., & Kim, J. (2008). Development of a wall-climbing robot using a tracked wheel mechanism. Journal of Mechanical Science and Technology, 22, 1490–1498.

    Google Scholar 

  72. Kim, H., Kim, D., Yang, H., Lee, K., & Seo, K. (2006). A wall climbing robot with vacuum caterpillar wheel system operated by mechanical valve. In 9th International conference on climbing and walking robots. Brussels, Belgium, pp. 28–33.

  73. Xu, Z. L., & Ma, P. S. (2002). A wall-climbing robot for labelling scale of oil tank’s volume. Robotica, 20, 209–212.

    Google Scholar 

  74. Shen, W. M., Gu, J., & Shen, Y. J. (2005). Permanent magnetic system design for the wall-climbing robot. In IEEE international conference on mechatronics automation. Niagara Falls, Canada, pp. 2078–2083.

  75. Schempf, H., Chemel, B., & Everett, N. (1995). Neptune: Above-ground storage tank inspection robot system. IEEE Robotics & Automation Magazine, 2, 9–15.

    Google Scholar 

  76. Shen, W. M., Gu, J., & Shen, Y. J. (2005). Proposed wall climbing robot with permanent magnetic tracks for inspecting oil tanks. In 2005 IEEE international conference on mechatronics and automations. Niagara Falls, Canada, pp. 2072–2077.

  77. Tovarnov, M. S., & Bykov, N. V. (2019). A mathematical model of the locomotion mechanism of a mobile track robot with the magnetic-tape principle of wall climbing. Journal of Machinery Manufacture and Reliability, 48, 250–258.

    Google Scholar 

  78. Wang, J. W., Wang, Y. S., Gao, W. J., & Masanori, S. (2011). Study on the wall climbing robot driven by the caterpillar tracks. In Proceedings of the sixteenth international symposium on artificial life and robotics. Beppu, Japan, pp. 1003–1005.

  79. Fukui, R., Yamada, Y., Mitsudome, K., Sano, K., & Warisawa, S. I. (2020). HanGrawler: large-payload and high-speed ceiling mobile robot using crawler. IEEE Transactions on Robotics, 36, 1053–1066.

    Google Scholar 

  80. Seo, T. W., & Sitti, M. (2011). Under-actuated tank-like climbing robot with various transitioning capabilities. In IEEE international conference on robotics and automation (ICRA). Shanghai, P.R. China, pp. 777–782.

  81. Liu, Y. W., Liu, S. W., Wang, L. M., Wu, X., Li, Y., & Mei, T. (2019). A novel tracked wall-climbing robot with bio-inspired spine feet. In Intelligent robotics and applications, ICIRA 2019. Shenyang, P.R. China, pp. 84–96.

  82. Park, C., Bae, J., Ryu, S., Lee, J., & Seo, T. (2021). R-track: Separable modular climbing robot design for wall-to-wall transition. IEEE Robotics and Automation Letters, 6, 1036–1042.

    Google Scholar 

  83. Zhang, L., Sun, J., Yin, G., Zhao, J., & Han, Q. (2015). A cross structured light sensor and stripe segmentation method for visual tracking of a wall climbing robot. Sensors (Basel), 15, 13725–13751.

    Google Scholar 

  84. Chen, X. L., Wu, Y. P., Hao, H. D., Shi, H. L., & Huang, H. C. (2019). Tracked wall-climbing robot for calibration of large vertical metal tanks. Applied Sciences-Basel, 9, 2671.

    Google Scholar 

  85. Huang, H. C., Li, D. H., Xue, Z., Chen, X. L., Liu, S. Y., Leng, J. X., & Wei, Y. (2017). Design and performance analysis of a tracked wall-climbing robot for ship inspection in shipbuilding. Ocean Engineering, 131, 224–230.

    Google Scholar 

  86. Gao, F. M., Fan, J. C., Zhang, L. B., Jiang, J. K., & He, S. J. (2020). Magnetic crawler climbing detection robot basing on metal magnetic memory testing technology. Robotics and Autonomous Systems, 125, 103439.

    Google Scholar 

  87. Unver, O., Uneri, A., Aydemir, A., & Sitti, M. (2006). Geckobot: A gecko inspired climbing robot using elastomer adhesives. In IEEE international conference on robotics and automation (ICRA). Orlando, FL, pp. 2329–2335.

  88. Sintov, A., Avramovich, T., & Shapiro, A. (2011). Design and motion planning of an autonomous climbing robot with claws. Robotics and Autonomous Systems, 59, 1008–1019.

    Google Scholar 

  89. Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Mattoli, V., & Cutkosky, M. R. (2007). Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for a climbing robot. In IEEE international conference on robotics and automation. Rome, Italy, pp. 1268–+.

  90. Hong, Q. F., Liu, R., Yang, H., & Zhai, X. D. (2009). Wall climbing robot enabled by a novel and robust vibration suction technology. In IEEE international conference on automation and logistics. Shenyang, P.R. China, pp. 331–336.

  91. Balaguer, C., Gimenez, A., & Jardón, A. (2005). Climbing robots’ mobility for inspection and maintenance of 3D complex environments. Autonomous Robots, 18, 157–169.

    Google Scholar 

  92. Pack, R. T., Christopher, J. L., & Kawamura, K. (1993). A rubbertuator-based structure-climbing inspection robot. In IEEE International conference on robotics and automation. Albuquerque, NM, USA, pp. 1869–1874.

  93. Bahr, B., Li, Y., & Najafi, M. (1996). Design and suction cup analysis of a wall climbing robot. Computers & Electrical Engineering, 22, 193–209.

    Google Scholar 

  94. Tummala, R. L., Mukherjee, R., Xi, N., Aslam, D., Dulimarta, H., Xiao, J., Minor, M., & Dangi, G. (2002). Climbing the walls. IEEE Robotics and Automation Magazine, 9, 10–19.

    Google Scholar 

  95. Abderrahim, M., Balaguer, C., Gimenez, A., Pastor, J. M., & Padron, V. M. (1999). ROMA: A climbing robot for inspection operations. In IEEE international conference on robotics and automation. Detroit, MI, USA, pp. 2303–2308.

  96. Peters, G., Pagano, D., Liu, D., & Waldron, K. (2010). A prototype climbing robot for inspection of complex ferrous structures. Emerging Trends in Mobile Robotics. https://doi.org/10.1142/9789814329927_0020

    Article  Google Scholar 

  97. Spenko, M. J., Haynes, G. C., Saunders, J., Cutkosky, M. R., Rizzi, A. A., Full, R. J., & Koditschek, D. E. (2008). Biologically inspired climbing with a hexapedal robot. Journal of field robotics, 25, 223–242.

    Google Scholar 

  98. Li, Y., Li, M. T., & Sun, L. N. (2007). Design and passable ability of transitions analysis of a six legged wall-climbing robot. In 2007 IEEE International conference on mechatronics and automation, Vols I–V, conference proceedings. Harbin, P.R. China, pp. 800–+.

  99. Wang, Z. H., Bao, G. J., Zhang, L. B., & Yang, Q. H. (2009). Development and control of flexible pneumatic wall-climbing robot. Journal of Central South University of Technology, 16, 961–970.

    Google Scholar 

  100. He, B., Xu, S. L., Zhou, Y. M., & Wang, Z. P. (2018). Mobility properties analyses of a wall climbing hexapod robot. Journal of Mechanical Science and Technology, 32, 1333–1344.

    Google Scholar 

  101. Albee, K., Espinoza, A. T., Andreyeva, K., Werner, N., Chen, H., & Sarvary, T. (2019). Motion planning for climbing mobility with implementation on a wall-climbing robot. In 2019 IEEE aerospace conference. Big Sky, MT, pp. 1869–1874.

  102. Sigeo, H., Akihiko, N., & Ryousei, T. (1991). Machine that can walk and climb on floors, walls and ceilings. In Transactions of the Japan society of mechanical engineers, pp. 753–758.

  103. Nagakubo, A., & Hirose, S. (1994). Walking and running of the quadruped wall-climbing robot. In IEEE international conference on robotics & automation. San Diego, CA, USA, pp 1005–1012.

  104. Bretl, T., Rock, S., Latombe, J.-C., Kennedy, B., & Aghazarian, H. (2006). Free-climbing with a multi-use robot. In Experimental Robotics IX, pp. 449–458.

  105. Gao, Y., Wei, W., Wang, X. M., Li, Y. J., Wang, D. L., & Yu, Q. D. (2021). Feasibility, planning and control of ground-wall transition for a suctorial hexapod robot. Applied Intelligence, 51, 5506–5524.

    Google Scholar 

  106. Kim, S., Asbeck, A. T., Cutkosky, M. R., & Provancher, W. R. (2005). SpinybotII: Climbing hard walls with compliant microspines. In 12th International Conference on Advanced Robotics. Seattle, WA, pp. 601–606.

  107. Liu, J. F., Xu, L. S., Chen, S. Q., Xu, H., Cheng, G. X., & Xu, J. J. (2021). Development of a bio-inspired wall-climbing robot composed of spine wheels, adhesive belts and eddy suction cup. Robotica, 39, 3–22.

    Google Scholar 

  108. Liu, J. F., Xu, L. S., Xu, J. J., Liu, L., Cheng, G. X., Chen, S. Q., Xu, H., Shi, J., & Liang, X. C. (2020). Analysis and optimization of the wall-climbing robot with an adsorption system and adhesive belts. International Journal of Advanced Robotic Systems. https://doi.org/10.1177/1729881420926409.

    Article  Google Scholar 

  109. Kim, H., Seo, K., Lee, K., Kim, J., & Kim, H. S. (2010). Development of a multi-body wall climbing robot with tracked wheel mechanism. In Emerging trends in mobile robotics. Nagoya, Japan, pp. 439–446.

  110. Lee, G., Wu, G., Kim, S. H., Kim, J., & Seo, T. (2012). Combot: Compliant climbing robotic platform with transitioning capability and payload capacity. In: IEEE International conference on robotics and automation (ICRA). St Paul, MN, pp. 2737–2742.

  111. Kim, T., Kim, H. S., & Kim, J. (2016). Position-based impedance control for force tracking of a wall-cleaning unit. International Journal of Precision Engineering and Manufacturing, 17, 323–329.

    Google Scholar 

  112. Chanchlani, R., Swami, S. K. R., Agarwal, R., Sharma, S., Agrawal, M., & Agarwal, R. (2013). Intelligent climber: A wireless wall-climbing robot utilizing vacuum suction and sand paper. In 2013 Texas instruments India educators' conference. Bangalore, India, pp. 271–276.

  113. Chen, N. N., Shi, K. G., & Li, X. (2020). Theoretical and experimental study and design method of blade height of a rotational-flow suction unit in a wall-climbing robot. Journal of Mechanisms and Robotics-Transactions of the Asme, 12, 1–17.

    Google Scholar 

  114. Zhao, Y., Fu, Z., Cao, Q., & Wang, Y. (2004). Development and applications of wall-climbing robots with a single suction cup. Robotica, 22, 643.

    Google Scholar 

  115. Chen, R., Fu, L. L., Qiu, Y. L., Song, R. Z., & Jin, Y. (2019). A gecko-inspired wall-climbing robot based on vibration suction mechanism. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 233, 7132–7143.

    Google Scholar 

  116. Li, X., & Dong, L. (2015). Development and analysis of an electrically activated sucker for handling workpieces with rough and uneven surfaces. IEEE/ASME Transactions on Mechatronics, 21, 1024–1034.

    Google Scholar 

  117. Shi, K., & Li, X. (2020). Vacuum suction unit based on the zero pressure difference method. Physics of Fluids, 32, 017104.

    Google Scholar 

  118. Akinfiev, T., Armada, M., & Nabulsi, S. (2009). Climbing cleaning robot for vertical surfaces. Industrial Robot: An International Journal, 36, 352–357.

    Google Scholar 

  119. Miyake, T., Ishihara, H., & Yoshimura, M. (2007). Basic studies on wet adhesion system for wall climbing robots. In IEEE/RSJ international conference on intelligent robots and systems. San Diego, CA, pp. 1926–+.

  120. Zhao, J., Li, X., & Bai, J. (2018). Experimental study of vortex suction unit-based wall-climbing robot on walls with various surface conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232, 3977–3991.

    Google Scholar 

  121. Amakawa, T., Yamaguchi, T., Yamada, Y., & Nakamura, T. (2017). Development of an adhesion unit for a traveling-wave-type, omnidirectional wall-climbing robot in airplane body inspection. In 2017 IEEE international conference on advanced intelligent mechatronics. Munich, Germany, pp. 291–296.

  122. Brusell, A., Andrikopoulos, G., & Nikolakopoulos, G. (2017). Novel considerations on the negative pressure adhesion of electric ducted fans: An experimental study. In 2017 25th Mediterranean conference on control and automation. Valletta, Malta. pp. 1404–1409.

  123. Amakawa, T., Yamaguchi, T., Yamada, Y., & Nakamura, T. (2017). Proposing an adhesion unit for a traveling-wave-type, omnidirectional wall-climbing robot in airplane body inspection applications. In 2017 IEEE international conference on mechatronics. Gippsland, Australia, pp. 178–183.

  124. Andriani, N., Maulida, M. D., Aniroh, Y. a., & Alfafa, M. F. (2016). Pressure control of a wheeled wall climbing robot using proporsional controller. In Proceedings of 2016 international conference on information & communication technology and systems. Surabaya, Indonesia, pp 124–128.

  125. Fallah, A., Rezasoltani, M., Riasi, A., & Moradi, H. (2015). Numerical analysis of a non-contact surface adhesion system based on vortex cup for wall climbing robots. Scientia Iranica, 22, 1904–1910.

    Google Scholar 

  126. Zhu, Y. W., Zhou, R. G., Yang, G., Zhu, Y. Q., & Hu, D. A. (2020). Experimental and numerical study of the adsorption performance of a vortex suction device using water-swirling flow. Science China-Technological Sciences, 63, 931–942.

    Google Scholar 

  127. Koo, I. M., Trong, T. D., Lee, Y. H., Moon, H., Koo, J., Park, S. K., & Choi, H. R. (2013). Development of wall climbing robot system by using impeller type adhesion mechanism. Journal of Intelligent & Robotic Systems, 72, 57–72.

    Google Scholar 

  128. Bo, W. J., Gao, X. S., Li, F. X., Ma, Y. T., & Cui, Y. F. (2013). Mechanics analysis and dynamic modeling of a wall climbing robot. In Materials processing and manufacturing III, Pts 1–4, 753–755,2001–+.

  129. Shujah, A., Habib, H., Shaikh, S., Ishfaq, A. R., Tahir, H., & Iqbal, J. (2019). Design and implementation of semi-autonomous wall climbing robot using vacuum suction adhesion. In: 17th IEEE world symposium on applied machine intelligence and informatics (SAMI). Herlany, Slovakia, pp. 275–279.

  130. Seddon, J. M. (2011). Basic helicopter aerodynamics. Hoboken: Wiley.

    Google Scholar 

  131. Glauert, H. (1983). The elements of aerofoil and airscrew theory. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  132. Shin, J.-U., Kim, D., Kim, J.-H., & Myung, H. (2013). Micro-aerial vehicle type wall-climbing robot mechanism for structural health monitoring. In: Conference on sensors and smart structures technologies for civil, mechanical, and aerospace systems. San Diego, CA.

  133. Kawasaki, K., Motegi, Y., Zhao, M., Okada, K., & Inaba, M. (2015). Dual connected bi-copter with new wall trace locomotion feasibility that can fly at arbitrary tilt angle. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Hamburg, Germany, pp. 524–531.

  134. Alkalla, M. G., Fanni, M. A., Mohamed, A. F., Hashimoto, S., & Hamed, A. (2019). EJBot-II: An optimized skid-steering propeller-type climbing robot with transition mechanism. Advanced Robotics, 33, 1042–1059.

    Google Scholar 

  135. Alkalla, M. G., Fanni, M. A., Mohamed, A. M., & Hashimoto, S. (2017). Tele-operated propeller-type climbing robot for inspection of petrochemical vessels. Industrial Robot, 44, 166–177.

    Google Scholar 

  136. Feng, X. B., Gao, L. S., Tian, W., Wei, R., Wang, Z. W., & Chen, Y. (2020). Application of wall climbing welding robot in automatic welding of island spherical tank. Journal of Coastal Research, 107, 1–4.

    Google Scholar 

  137. Howlader, O. F., & Sattar, T. P. (2015). Finite element analysis based optimization of magnetic adhesion module for concrete wall climbing robot. International Journal of Advanced Computer Science and Applications, 6, 8–18.

    Google Scholar 

  138. Kim, J. H., Park, S. M., Kim, J. H., & Lee, J. Y. (2010). Design and experimental implementation of easily detachable permanent magnet reluctance wheel for wall-climbing mobile robot. Journal of Magnetics, 15, 128–131.

    Google Scholar 

  139. Rochat, F., Beira, R., Bleuler, H., & Mondada, F. (2012). Tremo: An inspection climbing inchworm based on magnetic switchable device. In Field Robotics, pp. 421–428.

  140. Armando Segovia De Los, R., Mayra Garduno, G., & Armida Gonzalez, L. (2007). 4steel-robot: A climbing mobile robot for gas containers inspection. In 9th int conf on math meth and comp tech in elect engn. Arcachon, France, pp. 200–+.

  141. Eich, M., & Vogele, T. (2011). Design and control of a lightweight magnetic climbing robot for vessel inspection. In Control & automation. Corfu, Greece, pp. 1200–1205.

  142. Mazumdar, A., & Asada, H. H. (2009) Mag-foot: A steel bridge inspection robot. IEEE RSJ International Conference on Intelligent Robots and Systems. St Louis, MO. 1691–1696.

  143. Akinfiev, T., Armada, M., Prieto, M., & Uquillas, M. (2000). Concerning a technique for increasing stability of climbing robots. Journal of Intelligent & Robotic Systems, 27, 195–209.

    MATH  Google Scholar 

  144. Cui, Z. W., Sun, Z. G., Zhang, W. Z., & Chen, Q. (2015). Permanent magnet absorbed repairing end effector for wall-climbing robot. In Proceedings of the 2015 international conference on electrical, automation and mechanical engineering. Phuket, Thailand, pp. 105–108.

  145. Tavakoli, M., Marques, L., & de Almeida, A. T. (2012). OmniClimber: An omnidirectional light weight climbing robot with flexibility to adapt to non-flat surfaces. In 25th IEEE\RSJ international conference on intelligent robots and systems (IROS). Algarve, Portugal, pp. 280–285.

  146. Li, J., & Wang, X. S. (2016). Novel omnidirectional climbing robot with adjustable magnetic adsorption mechanism. In 23rd International conference on mechatronics and machine vision in practice (M2VIP). Nanjing, P.R. China. pp. 162–166.

  147. Fischer, W., Tache, F., & Siegwart, R. (2007). Inspection system for very thin and fragile surfaces, based on a pair of wall climbing robots with magnetic wheels. In IEEE/RSJ international conference on intelligent robots and systems. San Diego, CA, pp. 1222–+.

  148. Schoeneich, P., Rochat, F., Olivier Truong-Dat, N., Caprari, G., Moser, R., Bleuler, H., & Mondada, F. (2010). Tubulo—A train-like miniature inspection climbing robot for ferromagnetic tubes. In 1st International conference on applied robotics for the power industry. Montreal, Canada, pp. 1–5.

  149. Rochat, F., Schoeneich, P., Truong-Dat Nguyen, O., & Mondada, F. (2009). Tripillar: Miniature magnetic caterpillar climbing robot with plane transition ability. In 12th International conference on climbing and walking robots the support technologies for mobile machines (CLAWAR). Istanbul, Turkey, pp. 343–350.

  150. Yan, C. F., Sun, Z. G., Zhang, W. Z., & Chen, Q. (2016). Design of novel multidirectional magnetized permanent magnetic adsorption device for wall-climbing robots. International Journal of Precision Engineering and Manufacturing, 17, 871–878.

    Google Scholar 

  151. Chen, Y., & Wang, C. M. (2013). The design of permanent magnetic adhesion system for wall-climbing robot. In Mechatronics and applied mechanics, Hong Kong, P.R. China, pp. 531–536.

  152. Huang, K., Sun, Y., Yang, J., Hao, M., Chen, Y., Hong, X. W., & Li, X. D. (2019). Researches on a wall-climbing robot based on electromagnetic adsorption. In Proceedings of 2019 IEEE 3rd information technology, networking, electronic and automation control conference. Chengdu, P.R. China, pp. 644–647.

  153. Chen, Y., Wang, C. M., & Bao, J. D. (2013). Analytical optimization of a new adjustable magnetic field adhesion mechanism. In Industrial instrumentation and control systems, Guilin, P.R. China, pp. 1129–1133.

  154. Fan, J., Xu, T., Fang, Q., Zhao, J., & Zhu, Y. (2020). A novel style design of a permanent-magnetic adsorption mechanism for a wall-climbing robot. Journal of Mechanisms and Robotics, 12, 035001.

    Google Scholar 

  155. Wang, L., Zhou, Q., & Xu, S. (2011). Role of locust Locusta migratoria manilensis claws and pads in attaching to substrates. Chinese Science Bulletin, 56, 789–795.

    Google Scholar 

  156. Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N., & Full, R. J. (2002). Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 99, 12252–12256.

    Google Scholar 

  157. Autumn, K., & Peattie, A. M. (2002). Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 42, 1081–1090.

    Google Scholar 

  158. Chattopadhyay, P., & Ghoshal, S. K. (2018). Adhesion technologies of bio-inspired climbing robots: A survey. International Journal of Robotics and Automation, 33, 654–661.

    Google Scholar 

  159. Ruibal, R., & Ernst, V. (1965). The structure of the digital setae of lizards. Journal of Morphology, 117, 271–293.

    Google Scholar 

  160. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R., & Full, R. J. (2000). Adhesive force of a single gecko foot-hair. Nature, 405, 681–685.

    Google Scholar 

  161. Wang, W., & Wu, S. (2016). A caterpillar climbing robot with spine claws and compliant structural modules. Robotica, 34, 1553.

    Google Scholar 

  162. Dharmawan, A. G., Xavier, P., Anderson, D., Perez, K. B., Hariri, H. H., Soh, G. S., Baji, A., Bouffanais, R., Foong, S., Low, H. Y., & Wood, K. L. (2018) A bio-inspired miniature climbing robot with bilayer dry adhesives: Design, modeling, and experimentation. In Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference. Quebec City, Canada.

  163. Dharmawan, A. G., Xavier, P., Hariri, H. H., Soh, G. S., Baji, A., Bouffanais, R., Foong, S., Low, H. Y., & Wood, K. L. (2019). Design, modeling, and experimentation of a bio-inspired miniature climbing robot with bilayer dry adhesives. Journal of Mechanisms and Robotics-Transactions of the ASME, 11, 020902.

    Google Scholar 

  164. Daltorio, K. A., Horchler, A. D., Gorb, S., Ritzmann, R. E., & Quinn, R. D. (2005). A small wall-walking robot with compliant, adhesive feet. In IEEE/RSJ international conference on intelligent robots & systems. Edmonton, Canada, pp. 4018–4023.

  165. Daltorio, K. A., Gorb, S., Peressadko, A., Horchler, A. D., Ritzmann, R. E., & Quinn, R. D. (2005). A robot that climbs walls using micro-structured polymer feet. In 8th International conference on climbing and walking robots (CLAWAR 2005). London, England, pp. 131–138.

  166. Bian, S. Y., Xie, D. Y., Wei, Y. L., Xu, F., Tang, M., & Kong, D. Y. (2019). A wall climbing robot arm capable of adapting to multiple contact wall surfaces. In Intelligent robotics and applications. Shenyang, P.R. China, pp. 97–109.

  167. Aksak, B., Murphy, M. P., & Sitti, M. (2008). Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces. In 2008 IEEE international conference on robotics and automation. Pasadena, CA, pp. 3058–3063.

  168. Bian, S. Y., Wei, Y. L., Xu, F., & Kong, D. Y. (2021). A four-legged wall-climbing robot with spines and miniature setae array inspired by longicorn and gecko. Journal of Bionic Engineering, 18, 292–305.

    Google Scholar 

  169. Bryant, M., Fitzgerald, J., Miller, S., Saltzman, J., Kim, S., Lin, Y., & Garcia, E. (2014). Climbing robot actuated by meso-hydraulic artificial muscles. In Active and passive smart structures and integrated systems 2014. San Diego, CA.

  170. Xu, F. Y., Wang, X. S., & Jiang, G. P. (2012). Design and analysis of a wall-climbing robot based on a mechanism utilizing hook-like claws regular paper. International Journal of Advanced Robotic Systems, 9, 261.

    Google Scholar 

  171. Chen, D. L., Zhang, Q., & Liu, S. Z. (2011). Design and realization of a flexible claw of rough wall climbing robot. In Mechatronics and materials processing I. Guangzhou, P.R. China, pp. 388–392.

  172. Asbeck, A. T., Kim, S., Cutkosky, M. R., Provancher, W. R., & Lanzetta, M. (2006). Scaling hard vertical surfaces with compliant microspine arrays. The International Journal of Robotics Research, 25, 1165–1179.

    Google Scholar 

  173. Parness, A., Frost, M., Thatte, N., King, J. P., Witkoe, K., Nevarez, M., Garrett, M., Aghazarian, H., & Kennedy, B. (2013). Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers. Journal of Field Robotics, 30, 897–915.

    Google Scholar 

  174. Birkmeyer, P., Gillies, A. G., & Fearing, R. S. (2011). CLASH: Climbing vertical loose cloth. In: IEEE/RSJ international conference on intelligent robots and systems. San Francisco, CA, pp. 5087–5093.

  175. Birkmeyer, P., Gillies, A. G., & Fearing, R. S. (2012). Dynamic climbing of near-vertical smooth surfaces. In 25th IEEE\RSJ international conference on intelligent robots and systems (IROS). Algarve, Portugal, pp. 286–292.

  176. Funatsu, M., Kawasaki, Y., Kawasaki, S., & Kikuchi, K. (2014). Development of cm-scale wall climbing hexapod robot with claws. MM Science Journal, 2014, 485–489.

    Google Scholar 

  177. Ji, A., Zhao, Z., Manoonpong, P., Wang, W., Chen, G., & Dai, Z. (2018). A bio-inspired climbing robot with flexible pads and claws. Journal of Bionic Engineering, 15, 368–378.

    Google Scholar 

  178. Cenydd, L., & Teahan, B. (2013). An embodied approach to arthropod animation. Computer Animation and Virtual Worlds, 24, 65–83.

    Google Scholar 

  179. Choi, H. C., Jung, G. P., & Cho, K. J. (2015). Design of a milli-scale, biomimetic platform for climbing on a rough surface. In IEEE international conference on robotics and biomimetics. Zhuhai, P.R. China, pp 2205–2210.

  180. Frantsevich, L., & Gorb, S. (2004). Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): Implications on the attachment mechanism. Arthropod Structure & Development, 33, 77–89.

    Google Scholar 

  181. Chen, H. F., Zhang, Y. N., Wu, X., Wang, X. J., Xu, L. S., Zhang, N. N., & Li, Z. C. (2018). Gripping force measurement of a bioinspired wall-climbing robot with spiny toe pads. In Proceedings of the ASME conference on smart materials, adaptive structures and intelligent systems. San Antonio, TX.

  182. Drechsler, P., & Federle, W. (2006). Biomechanics of smooth adhesive pads in insects: Influence of tarsal secretion on attachment performance. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 192, 1213–1222.

    Google Scholar 

  183. He, B., Wang, Z. P., Li, M. H., Wang, K., Shen, R. J., & Hu, S. Q. (2014). Wet adhesion iInspired bionic climbing robot. IEEE-ASME Transactions on Mechatronics, 19, 312–320.

    Google Scholar 

  184. Mao, J.-B., Qin, L., Zhang, W.-X., Xie, L., & Wang, Y. (2015). Modeling and analysis of electrostatic adhesion force for climbing robot on dielectric wall materials. European Physical Journal-Applied Physics, 69, 11003.

    Google Scholar 

  185. Griffiths, G., & Studley, M. (2012). Wall climbing robots using electro-adhesion technology. In Field Robotics, pp. 381–387.

  186. Takahashi, K., Hasegawa, T., & Yuta, S. I. (2019). Flexible electrostatic adhesive device and its performance evaluations. In IEEE/SICE International Symposium on System Integration (SII). Paris, France, pp. 679–682.

  187. Ruffatto, D., III., Parness, A., & Spenko, M. (2014). Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive. Journal of the Royal Society Interface. https://doi.org/10.1098/rsif.2013.1089

    Article  Google Scholar 

  188. Guo, J. L., Justham, L., Jackson, M., & Parkin, R. (2015). A concept selection method for designing climbing robots. Key Engineering Materials, 649, 22–29.

    Google Scholar 

  189. Chen, R., Liu, R., & Shen, H. (2013). Design of a double-tracked wall climbing robot based on electrostatic adhesion mechanism. IEEE Workshop on Advanced Robotics and Its Social Impacts. Tokyo, Japan. 212–217.

  190. Chen, R., Liu, R., Chen, J. F., & Zhang, J. (2013). A gecko inspired wall-climbing robot based on electrostatic adhesion mechanism. In IEEE international conference on robotics and biomimetics, Shenzhen, P.R. China, pp. 396–401.

  191. Yamamoto, A., Nakashima, T., & Higuchi, T. (2007). Wall climbing mechanisms using electrostatic attraction generated by flexible electrodes. In: International symposium on micro-nanomechatronics and human science. Nagoya, Japan, pp. 389–394.

  192. Sabermand, V., Ghorbanirezaei, S., & Hojjat, Y. (2019). Testing the application of Free Flapping Foils (FFF) as a method to improve adhesion in an electrostatic wall-climbing robot. Journal of Adhesion Science and Technology, 33, 2579–2594.

    Google Scholar 

  193. Koh, K. H., Sreekumar, M., & Ponnambalam, S. G. (2016). Hybrid electrostatic and elastomer adhesion mechanism for wall climbing robot. Mechatronics, 35, 122–135.

    Google Scholar 

  194. Chen, R., Huang, Y., & Tang, Q. (2017). An analytical model for electrostatic adhesive dynamics on dielectric substrates. Journal of Adhesion Science and Technology, 31, 1229–1250.

    Google Scholar 

  195. Chen, R., Liu, R., & Shen, H. (2013). Modeling and analysis of electric field and electrostatic adhesion force generated by interdigital electrodes for wall climbing robots. In IEEE/RSJ international conference on intelligent robots and systems. Tokyo, Japan, pp. 2327–2332.

  196. Liu, R., Chen, R., Shen, H., & Zhang, R. (2013). Wall climbing robot using electrostatic adhesion force generated by flexible interdigital electrodes. International Journal of Advanced Robotic Systems, 10, 1.

    Google Scholar 

  197. Prahlad, H., Pelrine, R., Stanford, S., Marlow, J., & Kornbluh, R. (2008). Electroadhesive robots - Wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology. In IEEE international conference on robotics & automation. Pasadena, CA, USA, pp. 19–23.

  198. Ahmad, M., Polotski, V., & Hurteau, R. (2000). Path tracking control of tracked vehicles. In Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia proceedings. San Francisco, CA, USA. pp. 2938–2943.

  199. Zhou, B., Peng, Y., & Han, J. D. (2007). UKF based estimation and tracking control of nonholonomic mobile robots with slipping. In IEEE international conference on robotics and biomimetics, Sanya, P.R. China, pp. 2058–2063.

  200. Qian, Z. Y., Zhao, Y. Z., Fu, Z., & Cao, Q. X. (2006). Design and realization of a non-actuated glass-curtain wall-cleaning robot prototype with dual suction cups. International Journal of Advanced Manufacturing Technology, 30, 147–155.

    Google Scholar 

  201. Gradetsky, V. G., Knyazkov, M. M., Semenov, E. A., & Sukhanov, A. N. (2019). Structure of wall climbing robot control system. In: 2019 IEEE international symposium on measurement and control in robotics. Clear Lake, TX, pp. A3-1-1–A3-1-4.

  202. Tavakoli, M., Lopes, P., Sgrigna, L., & Viegas, C. (2015). Motion control of an omnidirectional climbing robot based on dead reckoning method. Mechatronics, 30, 94–106.

    Google Scholar 

  203. Fierro, R., & Lewis, F. L. (1998). Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on Neural Networks, 9, 589–600.

    Google Scholar 

  204. Go, T., Osawa, T., Ogawa, T., & Nakamura, T. (2014). Development of traveling wave type omnidirectional wall climbing robot using permanent magnetic adhesion mechanism and proposal of locomotion strategy for the robot. In IEEE/ASME international conference on advanced intelligent mechatronics. Besancon, France, pp. 1000–1005.

  205. Fan, C. W., Zhang, Y. B., Zhu, W. R., & Pan, H. P. (2016). A kind of wall-climbing robot based on wireless communication among multi-processors. In Proceedings of the 28th Chinese control and decision conference. Yinchuan, P.R. China, pp. 5320–5324.

  206. Chen, K., & Liu, Y. (2017). Optimal complete coverage planning of wall-climbing robot using improved biologically inspired neural network. In IEEE International conference on real-time computing and robotics. Okinawa, Japan, pp. 587–592.

  207. Dung, N., & Shimada, A. (2013). A path motion planning for humanoid climbing robot. Eurosim Congress on Modelling and Simulation. Cardiff, Wales, pp. 179–184.

  208. Huang, G. Q., Yu, M., & Ling, J. Y. (2011). Study in stereovision obstacle avoidance for adsorption type wall-climbing robot with several legs. In New trends and applications of computer-aided material and engineering. Hangzhou, P.R. China, pp. 26–+.

  209. Ge, D. X., Ren, C., Matsuno, T., & Mao, S. G. (2016). Guide rail design for a passive suction cup based wall-climbing robot. In: IEEE/RSJ international conference on intelligent robots and systems. Daejeon, South Korea, pp.5776–5781.

  210. Ge, D. X., Tang, Y. C., Ma, S. G., Matsuno, T., & Ren, C. (2020). A pressing attachment approach for a wall-climbing robot utilizing passive suction cups. Robotics, 9, 5776–5781.

    Google Scholar 

  211. Liu, R., & Liang, R. (2013). Design of a docking wall-climbing robot. International Journal of Advanced Robotic Systems, 10, 88.

    Google Scholar 

  212. Han, T. Y., & Qian, R. M. (2020). Analysis of the wheel-wall gap and Its influence on magnetic force for wheeled wall-climbing robot adsorbed on the cylindrical tank. In: Proceedings of 2020 IEEE 4th information technology, networking, electronic and automation control conference. Electr network, pp. 889–893.

  213. Tu, C. L., Li, X. D., Li, J., Sun, S. C., & Wang, X. S. (2017). Bilateral laser vision tracking synchronous inspection robotic system. Proceedings of 2017 IEEE Far East forum on nondestructive evaluation/testing: New technology & application. Xian, P.R. China, pp. 207–215.

  214. Li, J., Feng, H., Tu, C. L., Jin, S. S., & Wang, X. S. (2019). Design of inspecion robot for spherical tank based on mecanum wheel. In Proceedings of 2019 Far East NDT new technology & application forum. Qingdao, P.R. China, pp. 218–224.

  215. Zheng, K., Li, J., Tu, C. L., & Wang, X. S. (2016). Two opposite sides synchronous tracking x-ray based robotic system for welding inspection. In Proceedings of 2016 23rd international conference on mechatronics and machine vision in practice. Nanjing, P.R. China, pp. 412–416.

  216. Daltorio, K. A., Horchler, A. D., Gorb, S., Ritzmann, R. E., & Quinn, R. D. (2005). A small wall-walking robot with compliant, adhesive feet. In 2005 IEEE/RSJ international conference on intelligent robots and systems. Edmonton, Canada, pp. 4018–4023.

  217. Fernandez, R., Gonzalez, E., & Feliu, V. (2010). A wall climbing robot for tank inspection. an autonomous prototype. In Annual conference on IEEE industrial electronics society. Glendale, AZ. pp. 1424–1429.

  218. Guan, W. H., Tao, Y. H., Cheng, H. Y., Ma, C. J., & Guo, P. J. (2012). Present status inspection technology and standards for large-sized in-service vertical storage tanks. In Proceedings of the ASME pressure vessels and piping conference Vol 1: codes and standards. Baltimore, MD. pp 749–754.

  219. Gu, J. Y., Wang, C. Q., & Wu, X. W. (2018). Self-adjusted adsorption strategy for an aircraft skin inspection robot. Journal of Mechanical Science and Technology, 32, 2867–2875.

    Google Scholar 

  220. Zhao, X. Y., Liu, R., Wang, K., & He, J. H. (2011). Analysis and experiments on pulse vibrating suction method for wall climbing robot. In Advanced manufacturing systems, Pts 1–3. Guilin, P.R. China, pp. 1837–1844.

  221. Gradetsky, V. G., Knyazkov, M. M., Fomin, L. F., Sukhanov, A. N., & Kryukova, A. A. (2014). Influence of external vibration disturbances on a wall climbing robot with vacuum grippers. Mobile service robotics. Poznan, Poland. 451–457.

  222. Deshpande, S., Bakse, A., Wabale, S., Deshrnukh, A., & Patil, D. (2015). Wall-climbing robot with mechanically synchronized gait. In International conference on industrial instrumentation and control. Pune, India. pp. 860–865.

  223. Wang, K., Wang, W., & Zhang, H. X. (2011). Development and experiment of wall-climbing caterpillar robot. In Advanced design technology. Guangzhou, P.R. China. pp. 2031–+.

  224. Bi, Z. Q., Guan, Y. S., Chen, S. Z., Zhu, H. F., & Zhang, H. (2012). A miniature biped wall-climbing robot for inspection of magnetic metal surfaces. In IEEE International Conference on Robotics and Biomimetics. Guangzhou, P.R. China, pp. 324–329.

  225. Go, T., Osawa, T., & Nakamura, T. (2015). Proposed locomotion strategy for a traveling-wave-type omnidirectional wall-climbing robot for spherical surfaces. In IEEE international conference on robotics and biomimetics. Zhuhai, P.R. China, pp. 2223–2228.

  226. Dong, S. (2019). Gravity and inertial load adaptive control of wall-climbing robot. Journal of Engineering-Joe, 2019, 442–446.

    Google Scholar 

  227. Zhang, Y. S., Zhou, H., Zhang, L., & Yang, H. (2017). A new kind of dual hemisphere capsule robot. Journal of Mechanical Engineering, 53, 110–118.

    Google Scholar 

  228. Wang, M., Shi, Q., Song, S., Hu, C., & Meng, Q. H. (2019). A novel relative position estimation method for capsule robot moving in gastrointestinal tract. Sensors, 19, 2746.

    Google Scholar 

  229. Hajiaghajani, A., Kim, D., Abdolali, A., & Ahn, S. (2020). Patterned magnetic fields for remote steering and wireless powering to a swimming microrobot. IEEE/ASME Transactions on Mechatronics, 25, 207–216.

    Google Scholar 

  230. Gu, G. Y., Zou, J., Zhao, R. K., Zhao, X. H., & Zhu, X. Y. (2018). Soft wall-climbing robots. Science. Robotics, 3, eaat2874.

    Google Scholar 

  231. Fujita, M., Ikeda, S., Fujimoto, T., Shimizu, T., Ikemoto, S., & Miyamoto, T. (2018). Development of universal vacuum gripper for wall-climbing robot. Advanced Robotics, 32, 283–296.

    Google Scholar 

  232. Sayed, M. E., Roberts, J. O., McKenzie, R. M., Aracri, S., Buchoux, A., & Stokes, A. A. (2020). Limpet II: A modular, untethered soft robot. Soft Robotics, 3, 319–339.

    Google Scholar 

  233. Elbadawi, M., Andrikopoulos, G., Nikolakopoulos, G., & Gustafsson, T. (2018). Bio-inspired climbing robots in wet environments: Recent trends in adhesion methods and materials. In IEEE international conference on robotics and biomimetics. Kuala Lumpur, Malaysia, pp. 2347–2353.

  234. Sadeghi, A., Beccai, L., & Mazzolai, B. (2012). Design and Development of Innovative Adhesive Suckers Inspired by the Tube Feet of Sea Urchins. In 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (Biorob), pp. 617–622.

  235. Daniel, G., Stefan, W., Stanislav, G., Wilhelm, B., & Thomas, S. (2014). The capillary adhesion technique: A versatile method for determining the liquid adhesion force and sample stiffness. Beilstein Journal of Nanotechnology, 6, 11–18.

    Google Scholar 

  236. Shuai, W., Meng, L., Wei, H., & Wang, X. L. (2016). Sticking/climbing ability and morphology studies of the toe pads of chinese fire belly newt. Journal of Bionic Engineering, 13, 115–123.

    Google Scholar 

  237. Santos, R., Gorb, S., Jamar, V., & Flammang, P. (2005). Adhesion of echinoderm tube feet to rough surfaces. Journal of Experimental Biology, 208, 2555–2567.

    Google Scholar 

  238. Tang, Y. C., Zhang, Q. T., Lin, G. J., & Jie, Y. (2018). Switchable adhesion actuator for amphibious climbing soft robot. Soft Robotics, 5, 592–600.

    Google Scholar 

  239. He, B., Wang, Z. P., Li, M. H., & Wang, K. (2014). Wet adhesion inspired bionic climbing robot. IEEE/ASME Transactions on Mechatronics, 19, 312–320.

    Google Scholar 

  240. Ko, H., Yi, H., & Jeong, H. E. (2017). Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (UNIclimb). International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 273–280.

    Google Scholar 

Download references

Funding

This work was funded by the Science and Technology Development Fund, Macau SAR (SKL-IOTSC-2018-2020) and the Shanxi Science and Technology Major Project (Grant Number 20191101014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Wang or Qiushi Bi.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Wang, S., Bi, Q. et al. Design and Technical Development of Wall-Climbing Robots: A Review. J Bionic Eng 19, 877–901 (2022). https://doi.org/10.1007/s42235-022-00189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00189-x

Keywords

Navigation