Skip to main content
Log in

Optimization and Experimental Study of Bionic Compliant End-effector for Robotic Cherry Tomato Harvesting

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

High harvesting success rate is part of the key technologies for robotic cherry tomato harvesting, which is closely related to the structural design of the end-effector. To obtain a high success rate of fruit harvesting, this paper presents a compliant end-effector with bio-inspired tarsus compliant gripper inspired by the structure and mechanics of the tarsal chain in the Serica orientalis Motschulsky. Response Surface Methodology (RSM) based on Box Behnken Design (BBD) technique has been used to optimize the key structural parameters of the bionic compliant end-effector for achieving the expected results in pulling pattern for robotic cherry tomato harvesting. Experiments were designed by maintaining three levels of four process parameters—Length of the Offset Segment Tarsomere (OSTL), Angle of the Inclined Segment Tarsomere (ISTA), Thickness of the Extended Segment Tarsomere (ESTT) and Length of the Extended Segment Tarsomere (ESTL). According to the optimization analysis results, the best parameter combination is OSTL 23 mm, ISTA 14°, ESTT 5.0 mm, ESTL 23 mm. Besides, the harvesting performance of the optimized bionic compliant end-effector was verified by experiments. The results indicated the harvesting success rate of fruits with different equatorial diameters was not less than 76%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Accessibility

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gilman, E. F. (2003). Branch-to-stem diameter ratio affects strength of attachment. Journal of Arboriculture, 29, 291–294.

    Google Scholar 

  2. Monta, M., Kondo, N., Ting, K. C., Giacomelli, G. A., & Ling, P. P. (1998). Harvesting end effector for inverted single truss tomato production systems. Journal of the Japanese Society of Agricultural Machinery, 60, 97–104.

    Google Scholar 

  3. Bac, C. W., van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. Journal of Field Robotics, 31, 888–911.

    Article  Google Scholar 

  4. Diener, G. R., Mohsenin, N. N., & Jenks, B. (1965). Vibration characteristics of trellis-trained apple trees with reference to fruit detachment. Transactions of the ASAE, 8, 20–24.

    Article  Google Scholar 

  5. Liu, J. Z., Yun, P., & Muhammad, F. (2020). Experimental and theoretical analysis of fruit plucking patterns for robotic tomato harvesting. Computers and Electronics in Agriculture, 173, 1–11.

    Google Scholar 

  6. Zhao, D. A., Lv, J., Ji, W., Zhang, Y., & Chen, Y. (2011). Design and control of an apple harvesting robot. Biosystems Engineering, 110, 112–122.

    Article  Google Scholar 

  7. Amatya, S., Karkee, M., Gongal, A., Zhang, Q., & Whiting, M. D. (2016). Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting. Biosystems Engineering, 146, 3–15.

    Article  Google Scholar 

  8. Feng, Q. C., Wang, X., Zheng, W. G., Quan, Q., & Kai, J. (2012). New strawberry harvesting robot for elevated-trough culture. International Journal of Agricultural and Biological Engineering, 5, 1–8.

    Google Scholar 

  9. Lu, J., & Sang, N. (2015). Detecting citrus fruits and occlusion recovery under natural illumination conditions. Computers and Electronics in Agriculture, 110, 121–130.

    Article  Google Scholar 

  10. Liu, J. Z., Yuan, Y., Gao, Y., Tang, S. Q., & Li, Z. G. (2019). Virtual model of grip-and-cut picking for simulation of vibration and falling of grape clusters. Transactions of the ASABE (American Society of Agricultural and Biological Engineers), 62, 603–614.

    Google Scholar 

  11. Wang, G., Yu, Y., & Feng, Q. (2016). Design of end-effector for tomato robotic harvesting. IFAC-Papers OnLine, 49, 190–193.

    Article  Google Scholar 

  12. Li, Z. G., Li, P. P., Yang, H. L., & Wang, Y. Q. (2013). Stability tests of two-finger tomato grasping for harvesting robots. Biosystems Engineering, 116, 163–170.

    Article  Google Scholar 

  13. Van Henten, E. J., Hemming, J., Van Tuijl, B. A. J., Kornet, J. G., Meuleman, J., Bontsema, J., & van Os, E. A. (2002). An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 13, 241–258.

    Article  MATH  Google Scholar 

  14. Lehnert, C., Sa, I., McCool, C., Upcroft, B., & Perez T. (2016). Sweet pepper pose detection and grasping for automated crop harvesting. Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21.

  15. Arad, B., Balendonck, J., Barth, R., Ben-Shahar, O., Edan, Y., Hellström, T., Hemming, J., Kurtser, P., Ringdahl, O., Tielen, T., & van Tuijl, B. (2020). Development of a sweet pepper harvesting robot. Journal of Field Robotics, 37, 1027–1039.

    Article  Google Scholar 

  16. Wang, Y., Yang, Y., Yang, C., Zhao, H., Chen, G., Zhang, Z., Fu, S., Zhang, M., & Xu, H. (2019). End-effector with a bite mode for harvesting citrus fruit in random stalk orientation environment. Computers and Electronics in Agriculture, 157, 454–470.

    Article  Google Scholar 

  17. Roshanianfard, A., & Noguchi, N. (2020). Pumpkin harvesting robotic end-effector. Computers and Electronics in Agriculture, 174, 105503.

    Article  Google Scholar 

  18. Bo, J., & Lin, L. X. (2014). Design and force control of underactuated manipulator of fruit and vegetable picking. Journal of Mechanical Engineering, 50, 1–7.

    Google Scholar 

  19. Kurpaska, S., Sobol, Z., Pedryc, N., Hebda, T., & Nawara, P. (2020). Analysis of the pneumatic system parameters of the suction cup integrated with the head for harvesting strawberry fruit. Sensors, 20, 4389.

    Article  Google Scholar 

  20. Lei, J., Huangying, Y. U., & Wang, T. (2016). Dynamic bending of bionic flexible body driven by pneumatic artificial muscles (PAMs) for spinning gait of quadruped robot. Chinese Journal of Mechanical Engineering, 29, 11–20.

    Article  Google Scholar 

  21. Kim, H. I., Han, M. W., Song, S. H., & Ahn, S. H. (2016). Soft morphing hand driven by SMA tendon wire. Composites Part B: Engineering, 105, 138–148.

    Article  Google Scholar 

  22. Shen, Q., Trabia, S., Stalbaum, T., Palmre, V., Kim, K., & Oh, I. K. (2016). A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Scientific Reports, 6, 24462.

    Article  Google Scholar 

  23. Luo, C., Wang, K., Li, G. Y., Yin, S. C., Yu, L. J., & Yang, E. (2019). Development of active soft robotic manipulators for stable grasping under slippery conditions. IEEE Access, 99, 1–1.

    Google Scholar 

  24. Li, Y. T., Chen, Y. H., Yang, Y., & Wei, Y. (2017). Passive particle jamming and its stiffening of soft robotic grippers. IEEE Transactions on Robotics, 33, 446455.

    Google Scholar 

  25. Russo, M., Ceccarelli, M., Corves, B., Hüsing, M., Lorenz, M., & Cafolla, D. (2017). Design and test of a gripper prototype for horticulture products. Robotics and Computer-Integrated Manufacturing, 44, 266–275.

    Article  Google Scholar 

  26. Hao, Y. F., Gong, Z. Y., Xie, Z. X., Guan, S. Y., Yang, X. B., Wang, T. M., & Wen, L. (2018). A soft bionic gripper with variable effective length. Journal of Bionic Engineering, 2, 220–235.

    Article  Google Scholar 

  27. Zang, H. B., Liao, B., Lang, X., Zhao, Z. L., Yuan, W. F., & Feng, X. Q. (2020). Bionic torus as a self-adaptive soft grasper in robots. Applied Physics Letters, 116, 1–3.

    Article  Google Scholar 

  28. Liu, Y. L., Zhang, Y. L., Xu, Q. S. (2016) Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams. IEEE/ASME Transactions on Mechatronics 1–1.

  29. Miao, Y. B., & Zheng, J. F. (2020). Optimization design of compliant constant-force mechanism for apple picking actuator. Computers and Electronics in Agriculture, 170, 105232.

    Article  Google Scholar 

  30. Xu, W. F., Zhang, H., Yuan, H., & Liang, B. (2021). A compliant adaptive gripper and its intrinsic force sensing method. IEEE Transactions on Robotics, 99, 1–20.

    Google Scholar 

  31. Yaguchi, H., Nagahama, K., Hasegawa, T., & Inaba M. (2016). Development of an autonomous tomato harvesting robot with rotational plucking gripper. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea (South), pp. 652–657.

  32. Tong. J. H., Zhang, Q., Karkee, M., & Jiang H. Y. (2014). Understanding the dynamics of hand picking patterns of fresh market apples. ASABE and CSBE/SCGAB Annual International Meeting. ASABE, Quebec, Canada, pp. 1–5.

  33. Xie, H., Kong, D., Shan, J., & Xu, F. (2021). Study the parametric effect of pulling pattern on cherry tomato harvesting using RSM-BBD techniques. Agriculture, 11, 1–13.

    Google Scholar 

  34. Gilman, E. F. (2013). Branch-to-stem diameter ratio affects strength of attachment. Journal of Arboriculture, 29, 291–294.

    Google Scholar 

  35. Liu, Y. W., Sun, S. M., Wu, X., & Mei, T. (2015). A wheeled wall-climbing robot with bio-inspired spine mechanisms. Journal of Bionic Engineering, 12, 17–28.

    Article  Google Scholar 

  36. Liu, Y. W., Liu, S. W., Wang, L. M., Wu, X., Li, Y., & Tao, M. (2019). A novel tracked wall-climbing robot with bio-inspired spine feet. Intelligent Robotics and Applications, 12, 84–96.

    Google Scholar 

  37. Frantsevich, L., & Gorb, S. (2004). Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): Implications on the attachment mechanism. Arthropod Structure and Development, 33, 77–89.

    Article  Google Scholar 

  38. Liu, Z., Zhao, Y. L., & Liang, A. P. (2015). Study on the ultrastructures of the attachment apparatus of 51 insect species. Journal of University of Chinese Academy of Sciences, 32, 172–184.

    Google Scholar 

  39. Kitamura S., Oka K. (2005). Recognition and cutting system of sweet pepper for picking robot in greenhouse horticulture. IEEE International Conference Mechatronics and Automation. IEEE, Niagara Falls, Canada, 1807–1812.

  40. Liu, J. Z. (2017). Research progress analysis of robotic harvesting technologies in greenhouse. Transactions of the Chinese Society for Agricultural Machinery., 48, 1–12.

    Google Scholar 

  41. Liu, H. W. (2017). Mechanics of Materials (6th ed.). Higher Education Press. (in chinese).

    Google Scholar 

  42. Singh, K. P., Pardeshi, I. L., Kumar, M., Srinivas, K., & Srivastva, A. K. (2008). Optimisation of machine parameters of a pedal-operated paddy thresher using RSM. Biosystems Engineering, 100, 591–600.

    Article  Google Scholar 

  43. Stagnari, F., Galieni, A., & Pisante, M. (2015). Shading and nitrogen management affect quality, safety and yield of greenhouse-grown leaf lettuce. Scientia Horticulturae, 192, 70–79.

    Article  Google Scholar 

  44. Bloch, V., Degani, A., & Bechar, A. (2018). A methodology of orchard architecture design for an optimal harvesting robot. Biosystems Engineering, 166, 126–137.

    Article  Google Scholar 

  45. Kumar, A., Kumar, V., & Kumar, J. (2013). Multi-response optimization of process parameters based on response surface methodology for pure titanium using wedm process. International Journal of Advanced Manufacturing Technology, 68, 2645–2668.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Anhui Provincial Major Science and Technology Project (Project No. 202203a06020002) and the Fundamental Research Funds for the Central Universities (No. BC210202084).

Funding

This article was funded by Anhui Provincial Major Science and Technology Project, 202203a06020002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyi Kong.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Kong, D. & Wang, Q. Optimization and Experimental Study of Bionic Compliant End-effector for Robotic Cherry Tomato Harvesting. J Bionic Eng 19, 1314–1333 (2022). https://doi.org/10.1007/s42235-022-00202-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00202-3

Keywords

Navigation