Skip to main content
Log in

Biocompatible Poly(ε-caprolactone)-based Shape-memory Polyurethane Composite Scaffold with Bone-induced Activity

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

3D porous scaffold could provide suitable bone-like structure for cell adhesion and proliferation; however, surgical suffering from large volume implantation is a great challenge for patients. In this study, a shape programmable porous poly(ε-caprolactone) (PCL)-based polyurethane scaffold with memory effect was synthesized via gas foaming method, using Citrate modified Amorphous calcium Phosphate (CAP) as bioactive factor. The bending experiments indicated that the scaffolds achieved excellent shape-memory effect, which could be influenced by particle weight content. In vitro mineralization results suggested that the deposition of hydroxyapatite was promoted by scaffolds. Additionally, cell assay showed that composite scaffolds presented good cell toxicity and osteogenicity by the differentiation of rat Mesenchymal Stem Cells (rMSCs) into the osteogenic lineage. In the model of rat cranial implantation, the reparative tissue covered the defect site and bone-like structure deposited on the scaffold due to the formation of new bones. In summary, the porous smart shape-memory composite scaffolds could be a potential candidate in future distinctive bone repair applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., & Grigolo, B. (2017). Scaffolds for bone tissue engineering: state of the art and new perspectives. Materials Science & Engineering C-Materials for Biological Applications, 78, 1246–1262.

    Article  Google Scholar 

  2. Puppi, D., Chiellini, F., Piras, A. M., & Chiellini, E. (2010). Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35, 403–440.

    Article  Google Scholar 

  3. Petite, H., Viateau, V., Bensaid, W., Meunier, A., de Pollak, C., Bourguignon, M., Oudina, K., Sedel, L., & Guillemin, G. (2000). Tissue-engineered bone regeneration. Nature Biotechnology, 18, 959–963.

    Article  Google Scholar 

  4. Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L. L., Han, F. X., Li, B., & Shu, W. M. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3, 278–314.

    Article  Google Scholar 

  5. Wang, W. H., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Materials, 2, 224–247.

    Article  Google Scholar 

  6. De Witte, T. M., Fratila-Apachitei, L. E., Zadpoor, A. A., & Peppas, N. A. (2018). Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative Biomaterials, 5, 197–211.

    Article  Google Scholar 

  7. Atala, A., Kasper, F. K., & Mikos, A. G. (2012). Engineering complex tissues. Science Translational Medicine, 4, 160rv112.

    Article  Google Scholar 

  8. Shaabani, A., Sedghi, R., Motasadizadeh, H., & Dinarvand, R. (2021). Self-healable conductive polyurethane with the body temperature-responsive shape memory for bone tissue engineering. Chemical Engineering Journal, 411, 128449.

    Article  Google Scholar 

  9. Lendlein, A., & Gould, O. E. C. (2019). Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nature Reviews Materials, 4, 116–133.

    Article  Google Scholar 

  10. Leng, J. S., Lan, X., Liu, Y. J., & Du, S. Y. (2011). Shape-memory polymers and their composites: stimulus methods and applications. Progress in Materials Science, 56, 1077–1135.

    Article  Google Scholar 

  11. Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer-polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217–1256.

    Article  Google Scholar 

  12. Siddiqui, N., Asawa, S., Birru, B., Baadhe, R., & Rao, S. (2018). PCL-based composite scaffold matrices for tissue engineering applications. Molecular Biotechnology, 60, 506–532.

    Article  Google Scholar 

  13. Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., & Hasirci, N. (2018). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science-Polymer Edition, 29, 863–893.

    Article  Google Scholar 

  14. Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H. S., Oh, J. S., Akaike, T., & Cho, C. S. (2003). A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 24, 801–808.

    Article  Google Scholar 

  15. Ma, C. Y., Tian, X. G., Kim, J. P., Xie, D. H., Ao, X., Shan, D. Y., Lin, Q. L., Hudock, M. R., Bai, X. C., & Yang, J. (2018). Citrate-based materials fuel human stem cells by metabonegenic regulation. Proceedings of the National Academy of Sciences of the United States of America, 115, 11741–11750.

    Google Scholar 

  16. Costello, L. C., Franklin, R. B., Reynolds, M. A., & Chellaiah, M. (2012). The important role of osteoblasts and citrate production in bone formation: “osteoblast citration” as a new concept for an old relationship. The Open Bone Journal, 4, 27–34.

    Article  Google Scholar 

  17. Schweikle, M., Bjornoy, S. H., van Helvoort, A. T. J., Haugen, H. J., Sikorski, P., & Tiainen, H. (2019). Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels. Acta Biomaterialia, 90, 132–145.

    Article  Google Scholar 

  18. Gyawali, D., Nair, P., Kim, H. K. W., & Yang, J. (2013). Citrate-based biodegradable injectable hydrogel composites for orthopedic applications. Biomaterials Science, 1, 52–64.

    Article  Google Scholar 

  19. Combes, C., & Rey, C. (2010). Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomaterialia, 6, 3362–3378.

    Article  Google Scholar 

  20. Chen, Y., Gu, W. J., Pan, H. H., Jiang, S. Q., & Tang, R. K. (2014). Stabilizing amorphous calcium phosphate phase by citrate adsorption. CrystEngComm, 16, 1864–1867.

    Article  Google Scholar 

  21. Li, Y., Wiliana, T., & Tam, K. C. (2007). Synthesis of amorphous calcium phosphate using various types of cyclodextrins. Materials Research Bulletin, 42, 820–827.

    Article  Google Scholar 

  22. Niu, X. F., Chen, S. Q., Feng, T., Wang, L. Z., Feng, Q. L., & Fan, Y. B. (2017). Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release. Materials Science & Engineering C-Materials for Biological Applications, 70, 1120–1124.

    Article  Google Scholar 

  23. Li, J. F., Liu, Y. Q., Gao, Y., Zhong, L. Z., Zou, Q., & Lai, X. F. (2016). Preparation and properties of calcium citrate nanosheets for bone graft substitute. Bioengineered, 7, 376–381.

    Article  Google Scholar 

  24. Barrioni, B. R., de Carvalho, S. M., Orefice, R. L., de Oliveira, A. A. R., & Pereira, M. D. (2015). Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Materials Science & Engineering C-Materials for Biological Applications, 52, 22–30.

    Article  Google Scholar 

  25. Chen, Q. Y., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Applied Materials & Interfaces, 9, 4015–4023.

    Article  Google Scholar 

  26. Krol, P., & Pilch-Pitera, B. (2007). Phase structure and thermal stability of crosslinked polyurethane elastomers based on well-defined prepolymers. Journal of Applied Polymer Science, 104, 1464–1474.

    Article  Google Scholar 

  27. Feng, C. F., Khor, K. A., Kweh, S. W. K., & Cheang, P. (2000). Thermally induced crystallization of amorphous calcium phosphate in plasma-spheroidised hydroxyapatite powders. Materials Letters, 46, 229–233.

    Article  Google Scholar 

  28. Fan, H. F., & Guo, Z. G. (2020). Bioinspired surfaces with wettability: Biomolecule adhesion behaviors. Biomaterials Science, 8, 1502–1535.

    Article  Google Scholar 

  29. Hao, L. J., Yang, H., Du, C., Fu, X. L., Zhao, N. R., Xu, S. J., Cui, F. Z., Mao, C. B., & Wang, Y. J. (2014). Directing the fate of human and mouse mesenchymal stem cells by hydroxyl-methyl mixed self-assembled monolayers with varying wettability. Journal of Materials Chemistry B, 2, 4794–4801.

    Article  Google Scholar 

  30. Toworfe, G. K., Composto, R. J., Shapiro, I. M., & Ducheyne, P. (2006). Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials, 27, 631–642.

    Article  Google Scholar 

  31. Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4, 518–524.

    Article  Google Scholar 

  32. Rao, S. H., Harini, B., Shadamarshan, R. P. K., Balagangadharan, K., & Selvamurugan, N. (2018). Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. International Journal of Biological Macromolecules, 110, 88–96.

    Article  Google Scholar 

  33. Gorna, K., & Gogolewski, S. (2006). Biodegradable porous polyurethane scaffolds for tissue repair and regeneration. Journal of Biomedical Materials Research Part A, 79A, 128–138.

    Article  Google Scholar 

  34. Xie, R. Q., Hu, J. L., Ng, F., Tan, L., Qin, T. W., Zhang, M. Q., & Guo, X. (2017). High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration. Ceramics International, 43, 4794–4802.

    Article  Google Scholar 

  35. Zhao, W., Huang, Z. P., Liu, L. W., Wang, W. B., Leng, J. S., & Liu, Y. J. (2021). Porous bone tissue scaffold concept based on shape memory PLA/Fe3O4. Composites Science and Technology, 203, 108563.

    Article  Google Scholar 

  36. Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27, 2907–2915.

    Article  Google Scholar 

  37. Yildirimer, L., & Seifalian, A. M. (2014). Three-dimensional biomaterial degradation—material choice, design and extrinsic factor considerations. Biotechnology Advances, 32, 984–999.

    Article  Google Scholar 

  38. Magnin, A., Pollet, E., Phalip, V., & Averous, L. (2020). Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 39, 107457.

    Article  Google Scholar 

  39. Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29, 2941–2953.

    Article  Google Scholar 

  40. Davies, E., Mueller, K. H., Wong, W. C., Pickard, C. J., Reid, D. G., Skepper, J. N., & Duer, M. J. (2014). Citrate bridges between mineral platelets in bone. Proceedings of the National Academy of Sciences of the United States of America, 111, 1354–1363.

    Google Scholar 

  41. Tran, R. T., Wang, L., Zhang, C., Huang, M. J., Tang, W. J., Zhang, C., Zhang, Z. M., Jin, D. D., Banik, B., Brown, J. L., Xie, Z. W., Bai, X. C., & Yang, J. (2014). Synthesis and characterization of biomimetic citrate-based biodegradable composites. Journal of Biomedical Materials Research Part A, 102, 2521–2532.

    Article  Google Scholar 

  42. Metallo, C. M., & Vander Heiden, M. G. (2010). Metabolism strikes back: metabolic flux regulates cell signaling. Genes & Development, 24, 2717–2722.

    Article  Google Scholar 

  43. Hutmacher, D. W., Schantz, J. T., Lam, C. X. F., Tan, K. C., & Lim, T. C. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Journal of Tissue Engineering and Regenerative Medicine, 1, 245–260.

    Article  Google Scholar 

  44. Iacobazzi, V., & Infantino, V. (2014). Citrate—new functions for an old metabolite. Biological Chemistry, 395, 387–399.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (NO. 41673109), Sichuan Science and Technology Program (2021YFH0098), Sichuan University Panzhihua school city strategic cooperation special fund project (2019CDPZH-6), the Science and Technology Department Project of Sichuan Province (2018SZDZX0022), and Key Project of Sichuan Vanadium and Titanium Industry Development Research Center (2018VTCY-Z-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1328 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Wang, L., Chen, X. et al. Biocompatible Poly(ε-caprolactone)-based Shape-memory Polyurethane Composite Scaffold with Bone-induced Activity. J Bionic Eng 19, 167–178 (2022). https://doi.org/10.1007/s42235-021-00125-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00125-5

Keywords

Navigation