Skip to main content
Log in

The Effects of Bio-inspired Electromagnetic Fields on Normal and Cancer Cells

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The electromagnetic field (EMF) is one of many environmental factors, which earth creatures are exposed to. There are many reports on the effects of EMF on living organisms. However, since the mechanism has not yet been fully understood, the biological effects of EMF are still controversial. In order to explore the effects of bio-inspired EMF (BIEMF) on normal and cancer cells, various cultured cells have been exposed to BIEMF of different directions, i.e. vertical, parallel and inclined. Significantly reduced ATP production in Hela and A549 cancer cells is found for the parallel and vertical BIEMF. More careful examination on Hela cells has revealed a cell density dependent inhibition on colony formation. The morphological observation of BIEMF-exposed Hela cells has suggested that the retarded cell proliferation is probably caused by cell death via apoptosis. Together these results may afford new insights for cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherry N. Schumann resonances, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity. Natural Hazards, 2002, 26, 279–331.

    Article  Google Scholar 

  2. Palmer S J, Rycroft M J, Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the earth’s surface. Surveys in Geophysics, 2006, 27, 557–595.

    Article  Google Scholar 

  3. Fu J P, Mo W C, Liu Y, He R Q. Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field. Bioelectromagnetics, 2016, 37, 212–222.

    Article  Google Scholar 

  4. Martino C F, Portelli L, McCabe K, Hernandez M, Barnes F. Reduction of the earth’s magnetic field inhibits growth rates of model cancer cell lines. Bioelectromagnetics, 2010, 31, 649–655.

    Article  Google Scholar 

  5. Galland P, Pazur A. Magnetoreception in plants. Journal of Plant Research, 2005, 118, 371–389.

    Article  Google Scholar 

  6. Pazur A, Schimek C, Galland P. Magnetoreception in microorganisms and fungi. Central European Journal of Biology, 2007, 2, 597–659.

    Google Scholar 

  7. Buchachenko A. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics, 2016, 37, 1–13.

    Article  Google Scholar 

  8. Grissom C B. Magnetic field effects in biology: A Survey of possible mechanisms with emphasis on radical-pair recombination. Chemical Reviews, 1995, 95, 3–24.

    Article  Google Scholar 

  9. Vijayalaxmi, Scarfi M R. International and national expert group evaluations: Biological/health effects of radiofrequency fields. International Journal of Environmental Research and Public Health, 2014, 11, 9376–9408.

    Article  Google Scholar 

  10. Hore P J. Are biochemical reactions affected by weak magnetic fields? Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1357–1358.

    Article  Google Scholar 

  11. Naarala J, Kesari K K, Mcclure I, Chavarriaga C, Juutilainen J, Martino C F. Direction-dependent effects of combined static and ELF magnetic fields on cell proliferation and superoxide radical production. BioMed Research International, 2017, 2017, 5675086.

    Article  Google Scholar 

  12. Tian X F, Wang D M, Zha M, Yang X X, Ji X M, Zhang L, Zhang X. Magnetic field direction differentially impacts the growth of different cell types. Electromagnetic Biology & Medicine, 2018, 37, 114–125.

    Article  Google Scholar 

  13. Milovanovich I D, Ćirković S, De Luka S R, Djordjevich D M, Ilić A Z, Popović T, Arsić A, Obradović D D, Oprić D, Ristić-Djurović J L, Trbovich A M. Homogeneous static magnetic field of different orientation induces biological changes in subacutely exposed mice. Environmental Science & Pollution Research, 2016, 23, 1584–1597.

    Article  Google Scholar 

  14. Zimmerman J W, Pennison M J, Brezovich I, Yi N, Yang C T, Ramaker R, Absher D, Myers R M, Kuster N, Costa F P, Barbault A, Pasche B. Cancer cell proliferation is inhibited by specific modulation frequencies. British Journal of Cancer, 2012, 106, 307–313.

    Article  Google Scholar 

  15. Barbault A, Costa F P, Bottger B, Munden R F, Bomholt F, Kuseter N, Pasche B. Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. Journal of Experimental Clinical Cancer Research, 2009, 28, 51.

    Article  Google Scholar 

  16. Costa F P, de Oliveira A C, Meirelles R, Machado M C, Zanesco T, Surjan R, Chammas M C, de Souza Rocha M, Morgan D, Cantor A, Zimmerman J, Brezovich I, Kuster N, Barbault A, Pasche B. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. British Journal of Cancer, 2011, 105, 640–648.

    Article  Google Scholar 

  17. Zimmerman J W, Jimenez H, Pennison M J, Brezovich I, Morgan D, Mudry A, Costa F P, Barbault A, Pasche B. Targeted treatment of cancer with radiofrequency electro magnetic fields amplitude-modulated at tumor-specific frequencies. Chinese Journal of Cancer, 2013, 32, 573–581.

    Article  Google Scholar 

  18. Kirson E D, Dbalý V, Tovarys F, Vymazal J, Soustiel J F, Itzhaki A, Mordechovich D, Steinberg-Shapira S, Gurvich Z, Schneiderman R, Wasserman Y, Salzberg M, Ryffel B, Goldsher D, Dekel E, Palti Y. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10152–10157.

    Article  Google Scholar 

  19. Kirson E D, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, Schatzberger R, Palti Y. Disruption of cancer cell replication by alternating electric fields. Cancer Research, 2004, 64, 3288–3295.

    Article  Google Scholar 

  20. Davies A M, Weinberg U, Palti Y. Tumor treating fields: A new frontier in cancer therapy. Annals of the New York Academy of Sciences, 2013, 1291, 86–95.

    Article  Google Scholar 

  21. Kirson E D, Giladi M, Gurvich Z, Itzhaki A, Mordechovich D, Schneiderman R S, Wasserman Y, Ryffel B, Goldsher D, Palti Y. Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clinical & Experimental Metastasis, 2009, 26, 633–640.

    Article  Google Scholar 

  22. Kirson E D, Schneiderman R S, Dbalý V, Tovaryš F, Vymazal J, Itzhaki A, Mordechovich D, Gurvich Z, Shmueli E, Goldsher D, Wasserman Y, Palti Y. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Medical Physics, 2009, 9, 1.

    Article  Google Scholar 

  23. Filipovic N, Djukic T, Radovic M, Cvetkovic D, Curcic M, Markovic S, Peulic A, Jeremic B. Electromagnetic field investigation on different cancer cell lines. Cancer Cell International, 2014, 14, 84.

    Article  Google Scholar 

  24. Buckner C A, Buckner A L, Koren S A, Persinger M A, Lafrenie R M. The effects of electromagnetic fields on B16-BL6 cells are dependent on their spatial and temporal character. Bioelectromagnetics, 2016, 38, 165–174.

    Article  Google Scholar 

  25. Meijer D K, Geesink H J. Favourable and unfavourable EMF frequency patterns in cancer: Perspectives for improved therapy and prevention. Journal of Cancer Therapy, 2018, 9, 188–230.

    Article  Google Scholar 

  26. Geltmeier A, Rinner B, Bade D, Meditz K, Witt R, Bicker U, Philipp C B, Maier P. Characterization of dynamic behaviour of MCF7 and MCF10A cells in ultrasonic field using modal and harmonic analyses. PLOS ONE, 2015, 10, e0134999.

    Article  Google Scholar 

  27. Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson R J, Beebe S J, Kolb J F, Schoenbach K H. Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochemical and Biophysical Research Communications, 2006, 343, 351–360.

    Article  Google Scholar 

  28. Novikov V V, Ponomarev V O, Novikov G V, Kuvichkin V V, Iablokova E V, Fesenko E E. Effects and molecular mechanisms of the biological action of weak and extremely weak magnetic fields. Biofizika, 2010, 55, 631–639.

    Google Scholar 

  29. Zhadin M N. Review of Russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics, 2015, 22, 27–45.

    Article  Google Scholar 

  30. Knowles J R. Enzyme-catalyzed phosphoryl transfer reactions. Annual Review of Biochemistry, 1980, 49, 877–919.

    Article  Google Scholar 

  31. Buchachenko A L, Kuznetsov D A. Magnetic field affects enzymatic ATP synthesis. Journal of the American Chemical Society, 2008, 130, 12868–12869.

    Article  Google Scholar 

  32. Shi Z, Yu H, Sun Y, Yang C, Lian H, Cai P. The energy metabolism in caenorhabditis elegans under the extremely low-frequency electromagnetic field exposure. Scientific Reports, 2015, 5, 8471.

    Article  Google Scholar 

  33. Buchachenko A L, Kouznetsov D A, Orlova M A, Markarian A A. Magnetic isotope effect of magnesium in phosphoglycerate kinase phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10793–10796.

    Article  Google Scholar 

  34. Hore P J, Mouritsen H. The radical-pair mechanism of magnetoreception. Annual Review of Biophysics, 2016, 45, 299–344.

    Article  Google Scholar 

  35. Kirschvink J L, Gould J L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems, 1981, 13, 181–201.

    Article  Google Scholar 

  36. Shcherbakov V P, Winklhofer M. The osmotic magnetometer: A new model for magnetite-based magnetoreceptors in animals. European Biophysics Journal, 1999, 28, 380–392.

    Article  Google Scholar 

  37. Davila A F, Winklhofer M, Shcherbakov V P, Petersen N. Magnetic pulse affects a putative magnetoreceptor mechanism. Biophysical Journal, 2005, 89, 56–63.

    Article  Google Scholar 

  38. Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G. A novel concept of Fe-mineral-based magnetoreception: Histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften, 2007, 94, 631–642.

    Article  Google Scholar 

  39. Liboff A R, Jenrow K A. New model for the avian magnetic compass. Bioelectromagnetics, 2000, 21, 555–565.

    Article  Google Scholar 

  40. Buchachenko A L, Kouznetsov D A, Breslavskaya N N, Orlova M A. Magnesium isotope effects in enzymatic phosphorylation. Journal of Physical Chemistry B, 2008, 112, 2548–2556.

    Article  Google Scholar 

  41. Mo W C, Zhang Z J, Liu Y, Bartlett P F, He R Q. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-Phase progression. PLOS ONE, 2013, 8, e54775.

    Article  Google Scholar 

  42. Wong D W, Gan W L, Teo Y K, Lew W S. Interplay of cell death signaling pathways mediated by alternating magnetic field gradient. Cell Death Discovery, 2018, 4, 49.

    Article  Google Scholar 

  43. Kroemer G, El-Deiry W S, Golstein P, Peter M E, Vaux D, Vandenabeele P, Zhivotovsky B, Bla-gosklonny M V, Malorni W, Knight R A, Piacentini M, Nagata S, Melino G. Classification of cell death: Recommendations of the nomenclature committee on cell death. Cell Death & Differentiation, 2005, 2, 1463–1467.

    Article  Google Scholar 

  44. Krysko D V, Berghe T V, Katharina D’Herde, Vandenabeele P. Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods, 2008, 44, 205–221.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (51605188 and 51605187), the Joint Program of Jilin Province and Jilin University (SXGJQY2017-1 and SXGJSF2017-2), Jilin Provincial Science & Technology Department (20190303039SF), and Program for JLU Science and Technology Innovative Research Team (2017TD-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenning Liu or Shujun Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Z., Liu, Z. et al. The Effects of Bio-inspired Electromagnetic Fields on Normal and Cancer Cells. J Bionic Eng 16, 943–953 (2019). https://doi.org/10.1007/s42235-019-0108-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0108-2

Keywords

Navigation