Skip to main content
Log in

Bioactive Materials: A Comprehensive Review on Interactions with Biological Microenvironment Based on the Immune Response

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Application of “bioactive materials”, as a modified version of biomaterials, can optimize the response of the biological system due to their surface reactivity and formation of strong interactions with the adjacent tissue upon implantation. However, choosing an appropriate bioactive material that suits to the application and provides the desired mechanical, physical, chemical and biological functionality, as well as understanding the aspects of biological reaction to the biomaterial, in particular immune response, it plays a key role in successful integration of the implant. In this review, we will discuss different bioactive materials including bioactive ceramics, polymers and composites and their applications in drug delivery and scaffold preparation in order to provide an adequate introduction to the recent studies. Considering the necessity of regulation of implant fate for higher biocompatibility, the comprehensive overview to the immune response will be reviewed with the focus on representing the cell-biomaterial interactions and more importantly, the inflammatory responses. Ultimately, we will also discuss about different approaches namely as immunomodulation to elicit the desired physiochemical properties and mimicking native cellular response using bioactive compounds, functionalizing the implant surface with active molecules and alteration of the surface morphology. With better understanding of bioactive materials and their interactions with body, more novel biomaterials representing desired properties can be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams D F. Tissue-biomaterial interactions. Journal of Materials Science, 1987, 22, 3421–3445.

    Article  Google Scholar 

  2. Williams D F. The Williams Dictionary of Biomaterials, Liverpool University Press. Liverpool, UK, 1999.

    Google Scholar 

  3. Hench L L, West J K. Biological applications of bioactive glasses, Life Chemistry Reports, 1996, 13, 187–241.

    Google Scholar 

  4. Zhao X, Courtney J M, Qian H. Bioactive Materials in Medicine: Design and Applications, Elsevier Science, Amsterdam, Netherlands, 2011.

    Book  Google Scholar 

  5. Brems J J. Role of bone graft substitutes for glenoid bone defects. Journal of Shoulder and Elbow Surgery, 2007, 16, S282–S285.

    Article  Google Scholar 

  6. Ohtsuki C, Kamitakahara M, Miyazaki T. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. Journal of the Royal Society Interface, 2009, 6, S349–S360.

    Article  Google Scholar 

  7. Juhasz J A, Best S M. Bioactive ceramics: Processing, structures and properties. Journal of Materials Science, 2012, 47, 610–624.

    Article  Google Scholar 

  8. Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 2013, 9, 7591–7621.

    Article  Google Scholar 

  9. Fathi M, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method. Materials Letters, 2007, 61, 3978–3983.

    Article  Google Scholar 

  10. Fihri A, Len C, Varma R S, Solhy A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews, 2017, 347, 48–76.

    Article  Google Scholar 

  11. Cai Y R, Liu Y K, Yan W Q, Hu Q H, Tao J H, Zhang M, Shi Z L, Tang R K. Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry, 2007, 17, 3780–3787.

    Article  Google Scholar 

  12. Wang Y, Liu L, Guo S. Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polymer Degradation and Stability, 2010, 95, 207–213.

    Article  Google Scholar 

  13. Kokubo T. Bioactive glass ceramics: Properties and applications. Biomaterials, 1991, 12, 155–163.

    Article  Google Scholar 

  14. Kokubo T. Surface chemistry of bioactive glass-ceramics. Journal of Non-Crystalline Solids, 1990, 120, 138–151.

    Article  Google Scholar 

  15. Sooksaen P, Suttiruengwong S, Oniem K, Ngamlamiad K. Fabrication of porous bioactive glass-ceramics via decomposition of natural fibres. Journal of Metals, Materials and Minerals, 2017, 18.

  16. Jones J R. Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2013, 9, 4457–4486.

    Article  Google Scholar 

  17. Stoor P, Söderling E, Salonen J I. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontologica Scandinavica, 1998, 56, 161–165.

    Article  Google Scholar 

  18. Bellantone M, Williams H D, Hench L L. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrobial Agents and Chemotherapy, 2002, 46, 1940–1945.

    Article  Google Scholar 

  19. Gentleman E, Fredholm Y C, Jell G, Lotfibakhshaiesh N, O’Donnell M D, Hill R G, Stevens M M. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials, 2010, 31, 3949–3956.

    Article  Google Scholar 

  20. Jalise S Z, Baheiraei N, Bagheri F. The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: In vitro and in vivo characterization. Ceramics International, 2018, 44, 14217–14227.

    Article  Google Scholar 

  21. Ruiz-Aguilar C, Olivares-Pinto U, Aguilar-Reyes E A, López-Juárez R, Alfonso I. Characterization of β-tricalcium phosphate powders synthesized by sol-gel and mechanosynthesis. Boletín de la Sociedad Española de Cerámica y Vidrio, 2018, 57, 213–220.

    Article  Google Scholar 

  22. Cannillo V, Pierli F, Sampath S, Siligardi C. Thermal and physical characterisation of apatite/wollastonite bioactive glass-ceramics. Journal of the European Ceramic Society, 2009, 29, 611–619.

    Article  Google Scholar 

  23. Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24, 2161–2175.

    Article  Google Scholar 

  24. Ratner B D, Hoffman A S, Schoen F J, Lemons J E. Biomaterials Science: An Introduction to Materials in Medicine, Elsevier, Amsterdam, Netherlands, 2006.

    Google Scholar 

  25. Cannillo V, Colmenares-Angulo J, Lusvarghi L, Pierli F, Sampath S. In vitro characterisation of plasma-sprayed apatite/wollastonite glass-ceramic biocoatings on titanium alloys. Journal of the European Ceramic Society, 2009, 29, 1665–1677.

    Article  Google Scholar 

  26. Parsa S F, Vafajoo A, Rostami A, Salarian R, Rabiee M, Rabiee N, Rabiee G, Tahriri M, Yadegari A, Vashaee D, Tayebi L, Michael R H. Early diagnosis of disease using microbead array technology: A review. Analytica Chimica Acta, 2018, 1032, 1–17.

    Article  Google Scholar 

  27. Rabiee N, Safarkhani M, Rabiee M. Ultra-sensitive electrochemical on-line determination of clarithromycin based on poly (L-aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode. Asian Journal of Nanosciences and Materials, 2018, 1, 61–70.

    Google Scholar 

  28. Ngwuluka N C, Ochekpe N A, Aruoma O I. Functions of bioactive and intelligent natural polymers in the optimization of drug delivery. Industrial Applications for Intelligent Polymers and Coatings, Hosseini M and Makhlouf A S H, eds., Springer International Publishing: Cham, Berlin, Germany, 2016, 165–184.

    Chapter  Google Scholar 

  29. Baheiraei N, Azami M, Hosseinkhani H. Investigation of magnesium incorporation within gelatin/calcium phosphate nanocomposite scaffold for bone tissue engineering. International Journal of Applied Ceramic Technology, 2015, 12, 245–253.

    Article  Google Scholar 

  30. Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin M S, Baheiraei N, Kamali M, Nourani M R. A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2353–2368.

    Google Scholar 

  31. Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 2017, 105, 1358–1368.

    Article  Google Scholar 

  32. Stratton S, Shelke N B, Hoshino K, Rudraiah S, Kumbar S G. Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 2016, 1, 93–108.

    Article  Google Scholar 

  33. Pellá M C G, Lima-Tenório M K, Tenório-Neto E T, Guilherme M R, Muniz E C, Rubira A F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydrate Polymers, 2018, 196, 233–245.

    Article  Google Scholar 

  34. Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. Materials Science and Engineering: C, 2018, 89, 456–469.

    Article  Google Scholar 

  35. Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan D L. Overview of silk fibroin use in wound dressings. Trends in Biotechnology, 2018, 36, 907–922.

    Article  Google Scholar 

  36. Zafar M S, Al-Samadani K H. Potential use of natural silk for bio-dental applications. Journal of Taibah University Medical Sciences, 2014, 9, 171–177.

    Article  Google Scholar 

  37. Nair L S, Laurencin C T. Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007, 32, 762–798.

    Article  Google Scholar 

  38. Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioactive Materials, 2018, 3, 129–138.

    Article  Google Scholar 

  39. Jiang L B, Su D H, Liu P, Ma Y Q, Shao Z Z, Dong J. Shape-memory collagen scaffold for enhanced cartilage regeneration: Native collagen versus denatured collagen. Osteoarthritis and Cartilage, 2018, 26, 1389–1399.

    Article  Google Scholar 

  40. Wu Y J, Chen T, Chen I F, Kuo S M, Chuang C W. Developing highly porous collagen scaffolds by using alginate microsphere porogens for stem cell cultures. Materials Letters, 2018, 223, 120–123.

    Article  Google Scholar 

  41. Abou-Okeil A, Fahmy H, El-Bisis M, Ahmed-Farid O. fHyaluronic acid/Na-alginate films. As topical bioactive wound dressings. European Polymer Journal, 2018, 109, 101–109.

    Article  Google Scholar 

  42. Highley C B, Prestwich G D, Burdick J A. Recent advances in hyaluronic acid hydrogels for biomedical applications. Current Opinion in Biotechnology, 2016, 40, 35–40.

    Article  Google Scholar 

  43. Wei M, Kim H M, Kokubo T, Evans J. Optimising the bioactivity of alkaline-treated titanium alloy. Materials Science and Engineering: C, 2002, 20, 125–134.

    Article  Google Scholar 

  44. Wu J M. Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. Journal of Crystal Growth, 2004, 269, 347–355.

    Article  Google Scholar 

  45. Khodaei M, Valanezhad A, Watanabe I, Yousefi R. Surface and mechanical properties of modified porous titanium scaffold. Surface and Coatings Technology, 2017, 315, 61–66.

    Article  Google Scholar 

  46. Liu X, Chu P K, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 2004, 47, 49–121.

    Article  Google Scholar 

  47. Mousa H M, Hussein K H, Pant H R, Woo H M, Park C H, Kim C S. In vitro degradation behavior and cytocompatibility of a bioceramic anodization films on the biodegradable magnesium alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488, 82–92.

    Article  Google Scholar 

  48. Wilson Dr J. Metallic biomaterials: State of the art and new challenges. Fundamental Biomaterials: Metals, 2018, 1, 1–33.

    Google Scholar 

  49. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov K K, Bazaka K. Metallic biomaterials: Current challenges and opportunities. Materials (Basel), 2017, 10, 884.

    Article  Google Scholar 

  50. Ariadurai S. Bio-Composites: Current Status and Future Trends. 5th International Technical Textiles Conference, Izmir, Turkey, 2012, 1–16.

    Google Scholar 

  51. Fu T, Zhao J L, Xu K W. The designable elastic modulus of 3-D fabric reinforced biocomposites. Materials Letters, 2007, 61, 330–333.

    Article  Google Scholar 

  52. Bakar M S A, Cheang P, Khor K A. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Composites Science and Technology, 2003, 63, 421–425.

    Article  Google Scholar 

  53. Boccaccini A R, Blaker J J. Bioactive composite materials for tissue engineering scaffolds. Expert Review of Medical Devices, 2005, 2, 303–317.

    Article  Google Scholar 

  54. Marcolongo M, Ducheyne P, Garino J, Schepers E. Bioactive glass fiber/polymeric composites bond to bone tissue. Journal of Biomedical Materials Research, 1998, 39, 161–170.

    Article  Google Scholar 

  55. Blaker J J, Maquet V, Jérôme R, Boccaccini A R, Nazhat S N. Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering. Acta Biomaterialia, 2005, 1, 643–652.

    Article  Google Scholar 

  56. O’donnell J N, Antonucci J, Skrtic D. Amorphous calcium phosphate composites with improved mechanical properties1. Journal of Bioactive and Compatible Polymers, 2006, 21, 169–184.

    Article  Google Scholar 

  57. Nie H, Wang C H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Journal of Controlled Release, 2007, 120, 111–121.

    Article  Google Scholar 

  58. Ma P X, Zhang R Y, Xiao G Z, Franceschi R. Engineering new bone tissue in vitro on highly porous poly (α-hydroxyl acids)/hydroxyapatite composite scaffolds. Journal of Biomedical Materials Research, 2001, 54, 284–293.

    Article  Google Scholar 

  59. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research, 2001, 55, 20–27.

    Article  Google Scholar 

  60. Maquet V, Boccaccini A R, Pravata L, Notingher I, Jérôme R. Porous poly (α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. Biomaterials, 2004, 25, 4185–4194.

    Article  Google Scholar 

  61. Andričić B, Kovačić T, Perinović S, Grgić A. Thermal Properties of Poly (L-lactide)/Calcium Carbonate Nanocomposites. Macromolecular Symposia, 2008, 263, 96–101.

    Article  Google Scholar 

  62. Salernitano E, Migliaresi C. Composite materials for biomedical applications: A review. Journal of Applied Biomaterials & Biomechanics, 2003, 1, 3–18.

    Google Scholar 

  63. Zustiak S P, Leach J B. Hydrolytically degradable poly (ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules, 2010, 11, 1348–1357.

    Article  Google Scholar 

  64. Ang K C, Leong K F, Chua C K, Chandrasekaran M. Compressive properties and degradability of poly (ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. Journal of Biomedical Materials Research A, 2007, 80, 655–660.

    Article  Google Scholar 

  65. Thomas D B, Convertine A J, Hester R D, Lowe A B, McCormick C L. Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations. Macromolecules, 2004, 37, 1735–1741.

    Article  Google Scholar 

  66. Müller R J, Kleeberg I, Deckwer W D. Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology, 2001, 86, 87–95.

    Article  Google Scholar 

  67. Santerre J, Woodhouse K, Laroche G, Labow R. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials, 2005, 26, 7457–7470.

    Article  Google Scholar 

  68. Ratcliffe A. Tissue engineering of vascular grafts. Matrix Biology, 2000, 19, 353–357.

    Article  Google Scholar 

  69. Balani K, Verma V, Agarwal A, Narayan R. Biosurfaces: A Materials Science and Engineering Perspective, John Wiley & Sons, New York, USA, 2015.

    Google Scholar 

  70. Morais J M, Papadimitrakopoulos F, Burgess D J. Biomaterials/tissue interactions: Possible solutions to overcome foreign body response. The AAPS Journal, 2010, 12, 188–196.

    Article  Google Scholar 

  71. Anderson J M. Biological responses to materials. Annual Review of Materials Research, 2001, 31, 81–110.

    Article  Google Scholar 

  72. Major M R, Wong V W, Nelson E R, Longaker M T, Gurtner G C. The foreign body response: At the interface of surgery and bioengineering. Plastic and Reconstructive Surgery, 2015, 135, 1489–1498.

    Article  Google Scholar 

  73. Yanez M, Blanchette J, Jabbarzadeh E. Modulation of inflammatory response to implanted biomaterials using natural compounds. Current Pharmaceutical Design, 2017, 23, 6347–6357.

    Article  Google Scholar 

  74. Zarnani A H, Moazzeni S M, Shokri F, Salehnia M, Dokouhaki P, Shojaeian J, Jeddi-Tehrani M. The efficient isolation of murine splenic dendritic cells and their cytochemical features. Histochemistry and Cell Biology, 2006, 126, 275–282.

    Article  Google Scholar 

  75. Naderi N, Pourfathollah A A, Alimoghaddam K, Moazzeni S M. Cord blood dendritic cells prevent the differentiation of naive T-helper cells towards Th1 irrespective of their subtype. Clinical and Experimental Medicine, 2009, 9, 29.

    Article  Google Scholar 

  76. Pourgholaminejad A, Aghdami N, Baharvand H, Moazzeni S M. Is TGFβ as an anti-inflammatory cytokine required for differentiation of inflammatory TH17 cells? Journal of Immunotoxicology, 2016, 13, 775–783.

    Article  Google Scholar 

  77. Anderson J M, Rodriguez A, Chang D T. Foreign body reaction to biomaterials. Seminars in Immunology, 2008, 20, 86–100.

    Article  Google Scholar 

  78. Galli S J, Borregaard N, Wynn T A. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nature Immunology, 2011, 12, 1035–1044.

    Article  Google Scholar 

  79. Badylak S F, Valentin J E, Ravindra A K, McCabe G P, Stewart-Akers A M. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Engineering Part A, 2008, 14, 1835–1842.

    Article  Google Scholar 

  80. Mitchell R, Cotran R. Acute and Chronic inflammation. Robbins Basic Pathology, 7th ed. Indian Saunders Co. Ltd, London, UK, 2004, 33–59.

    Google Scholar 

  81. Pober J S, Cotran R S. The role of endothelial cells in inflammation. Transplantation, 1990, 50, 537–544.

    Article  Google Scholar 

  82. Ginhoux F, Jung S. Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nature Reviews Immunology, 2014, 14, 392–404.

    Article  Google Scholar 

  83. Wiggins M J, Wilkoff B, Anderson J M, Hiltner A. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. Journal of Biomedical Materials Research, 2001, 58, 302–307.

    Article  Google Scholar 

  84. Wynn T A, Ramalingam T R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nature Medicine, 2012, 18, 1028–1040.

    Article  Google Scholar 

  85. Sheikh Z, Brooks P J, Barzilay O, Fine N, Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials, 2015, 28, 5671–5701.

    Article  Google Scholar 

  86. Sieminski A L, Gooch K J. Biomaterial-microvasculature interactions. Biomaterials, 2000, 21, 2233–2241.

    Article  Google Scholar 

  87. Schoen F, Anderson J. Host response to biomaterials and their evaluation. Biomaterials Science: An Introduction to Materials in Medicine, 2nd, Elsevier, San Diego, USA, 2004, 293–296.

    Google Scholar 

  88. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research, 2009, 37, 1528–1542.

    Article  Google Scholar 

  89. Abbas A K, Lichtman A H H, Pillai S. Cellular and Molecular Immunology E-book, Elsevier Health Sciences, Amsterdam, Netherlands, 2014.

    Google Scholar 

  90. Arshady R. Polymeric biomaterials: Chemistry, concepts, criteria. In: Introduction to Polymeric Biomaterials: The Polymeric Biomaterials Series, Citus Books, London, UK, 2003, 1–62.

    Google Scholar 

  91. Jenney C R, Anderson J M. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. Journal of Biomedical Materials Research, 2000, 49, 435–447.

    Article  Google Scholar 

  92. Wilson C J, Clegg R E, Leavesley D I, Pearcy M J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 2005, 11, 1–18.

    Article  Google Scholar 

  93. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 2007, 28, 3074–3082.

    Article  Google Scholar 

  94. Bonakdar S, Orang F, Rafienia M, Imani R. Comparison of the effect of hydrophilicity on biocompatibility and platelet adhesion of two different kinds of biomaterials. Iranian Journal of Pharmaceutical Sciences, 2008, 4, 37–44.

    Google Scholar 

  95. Williams D F. On the mechanisms of biocompatibility. Biomaterials, 2008, 29, 2941–2953.

    Article  Google Scholar 

  96. Schulman G. A review of the concept of biocompatibility. Kidney International Supplement, 1993, 41, S209–S212.

    Google Scholar 

  97. Hubbell J A. Bioactive biomaterials. Current Opinion in Biotechnology, 1999, 10, 123–129.

    Article  Google Scholar 

  98. Franz S, Rammelt S, Scharnweber D, Simon J C. Immune responses to implants — A review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 2011, 32, 6692–6709.

    Article  Google Scholar 

  99. Ikada Y. Surface modification of polymers for medical applications. Biomaterials, 1994, 15, 725–736.

    Article  Google Scholar 

  100. Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry, 2008, 8, 270–280.

    Article  Google Scholar 

  101. Roach P, Eglin D, Rohde K, Perry C C. Modern biomaterials: A review — bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 2007, 18, 1263–1277.

    Google Scholar 

  102. Lamichhane S, Anderson J A, Vierhout T, Remund T, Sun H, Kelly P. Polytetrafluoroethylene topographies determine the adhesion, activation, and foreign body giant cell formation of macrophages. Journal of Biomedical Materials Research Part A, 2017, 105, 2441–2450.

    Article  Google Scholar 

  103. Bota P C S, Collie A M B, Puolakkainen P, Vernon R B, Sage E H, Ratner B D, Stayton P S. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. Journal of Biomedical Materials Research Part A, 2010, 95, 649–657.

    Article  Google Scholar 

  104. Otto J, Binnebösel M, Pietsch S, Anurov M, Titkova S, Öttinger A, Jansen M, Rosch R, Kämmer D, Klinge U. Large-pore PDS mesh compared to small-pore PG mesh. Journal of Investigative Surgery, 2010, 23, 190–196.

    Article  Google Scholar 

  105. Wu C, Chen M, Zheng T, Yang X. Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy. Bio-Medical Materials and Engineering, 2015, 26, 155–164.

    Article  Google Scholar 

  106. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering C, 2003, 23, 551–560.

    Article  Google Scholar 

  107. Schakenraad J M, Busscher H J, Wildevuur C R H, Arends J. Thermodynamic aspects of cell spreading on solid substrata. Cell Biophysics, 1988, 13, 75–91.

    Article  Google Scholar 

  108. Parker J A, Walboomers X F, Von den Hoff J W, Maltha J C, Jansen J A. Soft-tissue response to silicone and poly-l-lactic acid implants with a periodic or random surface micropattern. Journal of Biomedical Materials Research, 2002, 61, 91–98.

    Article  Google Scholar 

  109. DeFife K M, Colton E, Nakayama Y, Matsuda T, Anderson J M. Spatial regulation and surface chemistry control of monocyte/macrophage adhesion and foreign body giant cell formation by photochemically micropatterned surfaces. Journal of Biomedical Materials Research, 1999, 45, 148–154.

    Article  Google Scholar 

  110. Luu T U, Gott S C, Woo B W, Rao M P, Liu W F. Micro-and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Applied Materials & Interfaces, 2015, 7, 28665–28672.

    Article  Google Scholar 

  111. Kyle D J, Oikonomou A, Hill E, Bayat A. Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nano-topographical features demonstrates favourable in vitro foreign body response of breast-derived fibroblasts. Biomaterials, 2015, 52, 88–102.

    Article  Google Scholar 

  112. Arnida, Janát-Amsbury M M, Ray A, Peterson C M, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 417–423.

    Article  Google Scholar 

  113. Karsdal M A, Nielsen M J, Sand J M, Henriksen K, Genovese F, Bay-Jensen A C, Smith V, Adamkewicz J I, Christiansen C, Leeming D J. Extracellular matrix remodeling: The common denominator in connective tissue diseases possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay and Drug Development Technologies, 2013, 11, 70–92.

    Article  Google Scholar 

  114. Petrie T A, Raynor J E, Dumbauld D W, Lee T T, Jagtap S, Templeman K L, Collard D M, García A J. Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Science Translational Medicine, 2010, 2, 45ra60.

    Article  Google Scholar 

  115. Schaer T P, Stewart S, Hsu B B, Klibanov A M. Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials, 2012, 33, 1245–1254.

    Article  Google Scholar 

  116. Khandwekar A, Rho C K. Modulation of cellular responses on engineered polyurethane implants. Journal of Biomedical Materials Research Part A, 2012, 100, 2211–2222.

    Google Scholar 

  117. Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng J T, Kazemzadeh-Narbat M, Yu K, Wang R, Straus S K, Brooks D E, Chew B H, Hancock R E W, Kizhakkedathu N. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials, 2011, 32, 3899–3909.

    Article  Google Scholar 

  118. Zeplin P H, Larena-Avellaneda A, Jordan M, Laske M, Schmidt K. Phosphorylcholine-coated silicone implants: Effect on inflammatory response and fibrous capsule formation. Annals of Plastic Surgery, 2010, 65, 560–564.

    Article  Google Scholar 

  119. Vieira V J, d’Acampora A J, Marcos A B W, Di Giunta G, de Vasconcellos Z A, Bins-Ely J, Neves R d E, Figueiredo C P. Vascular endothelial growth factor overexpression positively modulates the characteristics of periprosthetic tissue of polyurethane-coated silicone breast implant in rats. Plastic and Reconstructive Surgery, 2010, 126, 1899–1910.

    Article  Google Scholar 

  120. Boehler R, Kuo R, Shin S, Goodman A, Pilecki M, Leonard J, Shea L D. Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype. Biotechnology and Bioengineering, 2014, 111, 1210–1221.

    Article  Google Scholar 

  121. Boomker J M, Luttikhuizen D T, Veninga H, de Leij L F, de Haan A, van Luyn M J, Harmsen M C. The modulation of angiogenesis in the foreign body response by the poxviral protein M-T7. Biomaterials, 2005, 26, 4874–4881.

    Article  Google Scholar 

  122. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomaterials Research, 2016, 20, 10.

    Article  Google Scholar 

  123. Wang W, Sun L, Zhang P, Song J, Liu W. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomaterialia, 2014, 10, 4983–4995.

    Article  Google Scholar 

  124. González-Gallego J, García-Mediavilla M V, Sánchez-Campos S, Tuñón M J. Anti-inflammatory and immunomodulatory properties of dietary flavonoids. Polyphenols in Human Health and Disease, 2014, 32, 435–452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nafiseh Baheiraei or Seyed Mohammad Moazzeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nour, S., Baheiraei, N., Imani, R. et al. Bioactive Materials: A Comprehensive Review on Interactions with Biological Microenvironment Based on the Immune Response. J Bionic Eng 16, 563–581 (2019). https://doi.org/10.1007/s42235-019-0046-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0046-z

Keywords

Navigation