Skip to main content
Log in

Zinc oxide nanoparticles: biogenesis and applications against phytopathogens

  • Review
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plant diseases and pests are responsible for 20–40% crop losses annually, threatening food security. Agrichemicals are extensively used to manage diseases and pests but their use is raising concerns due to their toxicity to humans and the environment. Nanotechnology has the potency of transforming the pesticide industry by decreasing toxicity, extending durability, and enhancing the dissolution rate of poorly water-soluble pesticides, which can all positively influence the environment. Biogenic-based synthesis of nanoparticles like zinc oxide nanoparticles (ZNPs) are of high interest for various applications such as the management of plant diseases because of their distinctive characteristics compared with engineered nanomaterials synthesized from bulk minerals. The prospect of producing ZNPs with biological activity is of heightened interest for their application against plant pathogens. ZNPs have antimicrobial capabilities and their characteristics depend on their size, shape, and reactivity. As a result, microbe-mediated ZNPs synthesis has dramatically expanded in recent years as an alternative to chemical and physical synthesis methods. These ZNPs have promising targeted antimicrobial properties and low phytotoxicity activities, making them appealing for antiviral, antibacterial, and antimycotic activities against a variety of pathogenic microbes, and for improve agricultural productivity, although potential biosafety issues need to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

NCPs:

Nanocrystalline Particles

NPs:

Nanoparticles

ZNPs:

Zinc Oxide Nanoparticles

ZnO:

Zinc Oxide

FTIR:

Fourier Transform Infrared Spectroscopy

UV-Vis:

UV-visible spectrophotometry

XRD:

X-Ray Diffractometer

SEM:

Scanning Electron Microscopy

EDAX:

Energy dispersion analysis of X-ray

DLS:

Dynamic Light Scattering

AFM:

Atomic Force Microscopy

TG-DTA:

Thermal-Gravimetric Differential Thermal Analysis

XPS:

X-ray Photoelectron Thermal

PL:

Photoluminescence

TEM:

Transmission Electron Microscopy

TSWV:

Tomato Spotted Wilt Virus

TMV:

Tobacco Mosaic Virus

ROS:

Reactive Oxygen Species

References

  • Abdelhakim H, El-Sayed E, Rashidi F (2020) Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J Appl Microbiol 128(6):1634–1646. https://doi.org/10.1111/jam.14581

  • Abdelkhalek A, Al-Askar AA (2020) Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus. Appl Sci 10(15):5054. https://doi.org/10.3390/app10155054

    Article  CAS  Google Scholar 

  • Acharya P, Jayaprakasha G, Crosby KM, Jifon JL, Patil BS (2019) Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L). ACS Sustain Chem Eng 7(17):14580–14590. https://doi.org/10.1021/acssuschemeng.9b02180

    Article  CAS  Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532. https://doi.org/10.1016/j.watres.2006.08.004

  • Adimule VM, Nandi SS, Kerur SS, Khadapure SA, Chinnam S (2022) Recent advances in the one-pot synthesis of coumarin derivatives from different starting materials using nanoparticles: a review. Top Catal 27:1–31. https://doi.org/10.1007/s11244-022-01571-z

    Article  CAS  Google Scholar 

  • Agarwal H, Menon S, Kumar SV, Rajeshkumar S (2018) Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 286:60–70. https://doi.org/10.1016/j.cbi.2018.03.008

    Article  CAS  Google Scholar 

  • Akçan R, Aydogan HC, Yildirim MŞ, Taştekin B, Sağlam N (2020) Nanotoxicity: a challenge for future medicine. Turk J Med Sci 50(4):1180–1196. https://doi.org/10.3906/sag-1912-209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al–Shabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Alsharaeh E, Khan MS, Hussain A, Rehman MT, Yusuf M (2016) Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad–spectrum quorum sensing and biofilm. Sci Rep 6(1):1–16. https://doi.org/10.1038/srep36761

    Article  CAS  Google Scholar 

  • Alavi M, Nokhodchi A (2021) Synthesis and modification of bio–derived antibacterial ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov Today 26(8):1953–1962. https://doi.org/10.1016/j.drudis.2021.03.030

    Article  CAS  PubMed  Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375. https://doi.org/10.1007/s11738-013-1369-8

    Article  CAS  Google Scholar 

  • Alprol AE, Mansour AT, El-Beltagi HS, Ashour M (2023) Algal extracts for Green Synthesis of Zinc Oxide Nanoparticles: Promising Approach for Algae Bioremediation. Materials 16(7):2819. https://doi.org/10.3390/ma16072819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambika S, Sundrarajan M (2015) Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B: Biol 146:52–57. https://doi.org/10.1016/j.jphotobiol.2015.02.020

  • Amjadi S, Emaminia S, Davudian SH, Pourmohammad S, Hamishehkar H, Roufegarinejad L (2019) Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr Polym 216:376–384. https://doi.org/10.1016/j.carbpol.2019.03.062

    Article  CAS  PubMed  Google Scholar 

  • Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C (2021) Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 13(18):4570. https://doi.org/10.3390/cancers13184570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari AA, Parchur AK, Chen G (2022) Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 457:214423. https://doi.org/10.1016/j.ccr.2022.214423

    Article  CAS  Google Scholar 

  • Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608. https://doi.org/10.1016/j.scitotenv.2011.01.014

  • Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E (2022) Chitosan nanofiber biocomposites for potential wound healing applications: antioxidant activity with synergic antibacterial effect. Bioeng Transl med 7(1):e10254. https://doi.org/10.1002/btm2.10254

    Article  CAS  PubMed  Google Scholar 

  • Bakshi M, Kumar A (2021) Copper-based nanoparticles in the soil-plant environment: assessing their applications, interactions, fate and toxicity. Chemosphere 281:130940. https://doi.org/10.1016/j.chemosphere.2021.130940

    Article  CAS  PubMed  Google Scholar 

  • Bayrami A, Ghorbani E, Pouran SR, Habibi-Yangjeh A, Khataee A, Bayrami M (2019) Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: Joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrason Sonochem 58:104613. https://doi.org/10.1016/j.ultsonch.2019.104613

  • Bose D, Chatterjee S (2016) Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl Nanosci 6(6):895–901. https://doi.org/10.1007/s13204-015-0496-5

  • Cai L, Liu C, Fan G, Liu C, Sun X (2019) Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ 6(12):3653–3669. https://doi.org/10.1039/C9EN00850K

  • Chandrasekaran R, Gnanasekar S, Seetharaman P, Keppanan R, Arockiaswamy W, Sivaperumal S (2016) Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J Mol Liq 219:232–238. https://doi.org/10.1016/j.molliq.2016.03.038

  • Chaudhuri SK, Malodia L (2017) Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl Nanosci 7(8):501–512. https://doi.org/10.1007/s13204-017-0586-7

  • Chauhan R, Reddy A, Abraham J (2015) Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl Nanosci 5(1):63–71. https://doi.org/10.1007/s13204-014-0292-7

  • Chaurasia U, Kumar A, Maurya DK, Yadav SK, Hussain T, Maurya VK (2021) Role of nano-biotechnology in agriculture and allied sciences. In: Mallick MA, Solanki MK, Kumari B, Verma SK (eds) Nanotechnology in sustainable agriculture. CRC Press, DOI, pp 69–96. https://doi.org/10.1201/9780429352003

    Chapter  Google Scholar 

  • Cheema AI, Ahmed T, Abbas A, Noman M, Zubair M, Shahid M (2022) Antimicrobial activity of the biologically synthesized zinc oxide nanoparticles against important rice pathogens. Physiol Mol Biol Plant 28(10):1955–1967. https://doi.org/10.1007/s12298-022-01251-y

  • Chen C, Unrine JM, Hu Y, Guo L, Tsyusko OV, Fan Z, Liu S, Wei G (2021) Responses of soil bacteria and fungal communities to pristine and sulfidized zinc oxide nanoparticles relative to Zn ions. J Hazard Mater 405:124258. https://doi.org/10.1016/j.jhazmat.2020.124258

  • Chen C, Guo L, Chen Y, Qin P, Wei G (2023) Pristine and sulfidized zinc oxide nanoparticles alter bacterial communities and metabolite profiles in soybean rhizocompartments. Sci Total Environ 855:158697. https://doi.org/10.1016/j.scitotenv.2022.158697

    Article  CAS  PubMed  Google Scholar 

  • Chhipa H (2019) Mycosynthesis of nanoparticles for smart agricultural practice: a green and eco-friendly approach. In: Shukla AK, Iravani S (eds) Green synthesis, characterization and applications of nanoparticles. Elsevier, Doi, pp 87–109. https://doi.org/10.1016/B978-0-08-102579-6.00005-8

    Chapter  Google Scholar 

  • Cornelis G, Doolette Madeleine Thomas C, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76(3):891–902. https://doi.org/10.2136/sssaj2011.0360

  • Cui S, Wu Y, Cui Z, He P, Huang N, Xu W, Hu J (2023) Low-frequency ultrasound-assisted biosynthesis and characterization of ZnO nanoparticles using Bacillus thuringiensis against Tribolium castaneum (Coleoptera, Tenebrionidae). Mater Lett 341:134158. https://doi.org/10.1016/j.matlet.2023.134158

    Article  CAS  Google Scholar 

  • Derbalah A, El-Moghazy S, Godah M (2013) Alternative Control Methods of Sugar-beet Leaf Spot Disease caused by the Fungus Cercospora beticola (Sacc). Egypt J Bio Pest Control 23(2):247–254

    Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals 26(6):913–924. https://doi.org/10.1007/s10534-013-9667-6

  • Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23(4):517–523. https://doi.org/10.1016/j.sjbs.2015.05.016

  • Dulub O, Boatner LA, Diebold U (2002) STM study of the geometric and electronic structure of ZnO (0001)-Zn,(0001)-O,(1010), and (1120) surfaces. Surf Sci 519(3):201–217. https://doi.org/10.1016/S0039-6028(02)02211-2

  • Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC (2014) Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@ AgCl) produced by laccase from Trametes versicolor. SpringerPlus 3(1):1–7. https://doi.org/10.1186/2193-1801-3-645

    Article  CAS  Google Scholar 

  • El-Ghamery A, El-Kholy M, Abou El-Yousser M (2003) Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutat Res Genet Toxicol Environ Mutagen 537(1):29–41. https://doi.org/10.1016/S1383-5718(03)00052-4

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95(8):960–966. https://doi.org/10.1094/PDIS-10-10-0741

  • Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133. Doi: https://doi.org/10.1146/annurev-phyto-080417-050108

  • Elmer W, Ma C, White J (2018) Nanoparticles for plant disease management. Curr Opin Environ 6:66–70. https://doi.org/10.1016/j.coesh.2018.08.002

  • Elsoud MMA, Al-Hagar OE, Abdelkhalek ES, Sidkey N (2018) Synthesis and investigations on Tellurium myconanoparticles. Biotechnol 18:e00247. https://doi.org/10.1016/j.btre.2018.e00247

  • Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci 345(329–336. https://doi.org/10.1016/j.apsusc.2015.03.176

  • Espitia PJP, Soares NFF, Coimbra JSR, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioproc Tech 5(5):1447–1464. https://doi.org/10.1007/s11947-012-0797-6

  • Farooq A, Khan UA, Ali H, Sathish M, Naqvi SA, Iqbal S, Ali H, Mubeen I, Amir MB, Mosa WF, Baazeem A (2022) Green chemistry based synthesis of zinc oxide nanoparticles using plant derivatives of Calotropis gigantea (Giant Milkweed) and its biological applications against various bacterial and fungal pathogens. Microorganisms 10(11):2195. https://doi.org/10.3390/microorganisms10112195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A (2020) Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech 83(1):72–80. https://doi.org/10.1002/jemt.23390

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Fu Z (2015) Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram Int 41(2):2492–2496. https://doi.org/10.1016/j.ceramint.2014.10.069

  • Gao X, Rodrigues SM, Spielman-Sun E, Lopes S, Rodrigues S, Zhang Y, Avellan A, Duarte RM, Duarte A, Casman EA (2019) Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environ Sci Technol 53(9):4959–4967. https://doi.org/10.1021/acs.est.8b07243

    Article  CAS  PubMed  Google Scholar 

  • Gauba A, Hari SK, Ramamoorthy V, Vellasamy S, Govindan G, Arasu MV (2023) The versatility of green synthesized zinc oxide nanoparticles in sustainable agriculture: a review on metal-microbe interaction that rewards agriculture. Physiol Mol Plant Path 13:102023. https://doi.org/10.1016/j.pmpp.2023.102023

    Article  CAS  Google Scholar 

  • Gbur T, Čuba V, Múčka V, Nikl M, Knížek K, Pospíšil M, Jakubec I (2011) Photochemical preparation of ZnO nanoparticles. J Nanopart Res 13(10):4529–4537. https://doi.org/10.1007/s11051-011-0407-y

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano–biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

  • Graham JH, Johnson E, Myers ME, Young M, Rajasekaran P, Das S, Santra S (2016) Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis 100(12):2442–2447. https://doi.org/10.1094/PDIS-05-16-0598-RE

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci: Mater Internation 22(6):693–700. https://doi.org/10.1016/j.pnsc.2012.11.015

  • Hamk M, Akçay FA, Avcı A (2022) Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Prep Biochem Biotech 53(3):255–264. https://doi.org/10.1080/10826068.2022.2076243

    Article  CAS  Google Scholar 

  • Han X-G, Jiang Y-Q, Xie S-F, Kuang Q, Zhou X, Cai D-P, Xie Z-X, Zheng L-S (2010) Control of the surface of ZnO nanostructures by selective wet–chemical etching. J Physi Chem C 114(22):10114–10118. https://doi.org/10.1021/jp101284p

  • Haque MJ, Bellah MM, Hassan MR, Rahman S (2020) Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express 1(1):010007. https://doi.org/10.1088/2632-959X/ab7a43

    Article  Google Scholar 

  • Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N (2023) Nanotechnology–A new frontier of nano-farming in agricultural and food production and its development. Sci Total Environ 857:159639. https://doi.org/10.1016/j.scitotenv.2022.159639

    Article  CAS  PubMed  Google Scholar 

  • Harish V, Ansari MM, Tewari D, Yadav AB, Sharma N, Bawarig S, García-Betancourt ML, Karatutlu A, Bechelany M, Barhoum A (2023) Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: a review. J Taiwan Institute Chem Eng 149:105010. https://doi.org/10.1016/j.jtice.2023.105010

    Article  CAS  Google Scholar 

  • Hasnidawani J, Azlina H, Norita H, Bonnia N, Ratim S, Ali E (2016) Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem 19:211–216. https://doi.org/10.1016/j.proche.2016.03.095

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215. https://doi.org/10.1016/j.micres.2010.03.003

  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316. https://doi.org/10.1016/j.chemosphere.2007.11.047

  • Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M (2022) Scale-up polymeric-based nanoparticles drug delivery systems: development and challenges. OpenNano 7:100048. https://doi.org/10.1016/j.onano.2022.100048

    Article  Google Scholar 

  • Hernández-Díaz JA, Garza‐García JJ, Zamudio‐Ojeda A, León‐Morales JM, López‐Velázquez JC, García‐Morales S (2021) Plant‐mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. J Sci Food Agric 101(4):1270–1287. https://doi.org/10.1002/jsfa.10767

    Article  CAS  PubMed  Google Scholar 

  • Hossain A, Abdallah Y, Ali MA, Masum MMI, Li B, Sun G, Meng Y, Wang Y, An Q (2019) Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules 9(12):863. https://doi.org/10.3390/biom9120863

  • Hou J, Yang Y, Wang P, Wang C, Miao L, Wang X, Lv B, You G, Liu Z (2017) Effects of CeO2, CuO, and ZnO nanoparticles on physiological features of Microcystis aeruginosa and the production and composition of extracellular polymeric substances. Environmental Science and Pollution Research 24(1):226–235. https://doi.org/10.1007/s11356-016-7387-5

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8):4140–4144. https://doi.org/10.1021/la7035949

  • Indhumathy M, Mala R (2013) Photocatalytic activity of zinc sulphate nano material on phytopathogens. Int j Agric Environ Biotechnol 6(4S):737

    Google Scholar 

  • Irshad MA, Nawaz R, ur Rehman MZ, Imran M, Ahmad J, Ahmad S, Inam A, Razzaq A, Rizwan M, Ali S (2020) Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere 258:127352. https://doi.org/10.1016/j.chemosphere.2020.127352

    Article  CAS  PubMed  Google Scholar 

  • Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, Asiri M, Seo A, Khan J SB (2019) Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr Pharm Des 25(34):3645–3663. https://doi.org/10.2174/1381612825666191021142026

    Article  CAS  PubMed  Google Scholar 

  • Itroutwar PD, Govindaraju K, Tamilselvan S, Kannan M, Raja K, Subramanian KS (2020) Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). J Plant Growth Regul 39(2):717–728. https://doi.org/10.1007/s00344-019-10012-3

  • Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398(2):701–716. https://doi.org/10.1007/s00216-010-3962-7

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 90:78–84. https://doi.org/10.1016/j.saa.2012.01.006

  • Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev 3(2):55–67. https://doi.org/10.1002/cben.201500018

  • Jiang Z, Li L, Huang H, He W, Ming W (2022) Progress in laser ablation and biological synthesis processes:top-Down and Bottom-Up approaches for the green synthesis of Au/Ag nanoparticles. Int J Mol Sci 23(23):14658. https://doi.org/10.3390/ijms232314658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia A, Abd-Elsalam KA, Kuca K (2020) Zinc-based nanomaterials for diagnosis and management of plant diseases: Ecological safety and future prospects. J Fungi 6(4):222. https://doi.org/10.3390/jof6040222

  • Kalpana V, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Rajeswari VD (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 3:48–55. https://doi.org/10.1016/j.onano.2018.06.001

  • Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365. https://doi.org/10.1016/j.molstruc.2016.07.029

  • Kaushik H, Dutta P (2017) Chemical synthesis of zinc oxide nanoparticle: its application for antimicrobial activity and plant health management. Phytopathology 107(12):38–38. https://eurekamag.com/research/066/352/066352762.php

    Google Scholar 

  • Kaushik M, Niranjan R, Thangam R, Madhan B, Pandiyarasan V, Ramachandran C, Oh D-H, Venkatasubbu GD (2019) Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl Surf Sci 479:1169–1177. https://doi.org/10.1016/j.apsusc.2019.02.189

  • Keshavarz S, Okoro OV, Hamidi M, Derakhshankhah H, Azizi M, Nabavi SM, Gholizadeh S, Amini SM, Shavandi A, Luque R, Samadian H (2022) Synthesis, surface modifications, and biomedical applications of carbon nanofibers: Electrospun vs vapor-grown carbon nanofibers. Coord Chem Rev 472:214770. https://doi.org/10.1016/j.ccr.2022.214770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, Ullah MF, Bibi H, Bafakeeh OT, Khedher NB, Eldin SM (2022) Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts 12(11):1386. https://doi.org/10.3390/catal12111386

    Article  CAS  Google Scholar 

  • Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526. https://doi.org/10.1016/j.micpath.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitology research 109(2):461–472. https://doi.org/10.1007/s00436-011-2277-8

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):1–10. https://doi.org/10.1186/1472-6750-13-37

  • Krukiewicz K, Zak JK (2016) Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Materials Science and Engineering: C 62:927–942. https://doi.org/10.1016/j.msec.2016.01.063

  • Krzepiłko A, Matyszczuk KM, Święciło A (2023) Effect of sublethal concentrations of zinc oxide nanoparticles on Bacillus cereus. Pathogens 12(3):485. https://doi.org/10.3390/pathogens12030485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Sahoo G, Pandey K, Nayak M, Topno R, Rabidas V, Das P (2018) Virostatic potential of zinc oxide (ZnO) nanoparticles on capsid protein of cytoplasmic side of chikungunya virus. International Journal of Infectious Diseases 73:368. https://doi.org/10.1016/j.ijid.2018.04.4247

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environmental science & technology 42(15):5580–5585. https://doi.org/10.1021/es800422x

  • Liu Y, Zhang M, Bu W (2020) Bioactive nanomaterials for ion-interference therapy. View 1(2):e18. https://doi.org/10.1002/viw2.18

    Article  Google Scholar 

  • Lowry GV, Avellan A, Gilbertson LM (2019) Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat Nanotechnol 14(6):517–522. https://doi.org/10.1038/s41565-019-0461-7

  • Luck J, Spackman M, Freeman A, Tre˛bicki P, Griffiths W, Finlay K, Chakraborty S (2011) Climate change and diseases of food crops. Plant Pathol 60(1):113–121. https://doi.org/10.1111/j.1365-3059.2010.02414.x

  • Luksiene Z, Rasiukeviciute N, Zudyte B, Uselis N (2020) Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J Photochem Photobiol B: Biol 203:111656. https://doi.org/10.1016/j.jphotobiol.2019.111656

  • Mahdi ZS, Talebnia Roshan F, Nikzad M, Ezoji H (2021) Biosynthesis of zinc oxide nanoparticles using bacteria: a study on the characterization and application for electrochemical determination of bisphenol A. Inorganic and Nano–Metal Chemistry 51(9):1249–1257. https://doi.org/10.1080/24701556.2020.1835962

  • Mahendiran D, Subash G, Arumai Selvan D, Rehana D, Senthil Kumar R, Kalilur Rahiman A (2017) Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies. BioNanoScience 7(3):530–545. https://doi.org/10.1007/s12668-017-0418-y

  • Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N, Parajuli N (2022) Current research on zinc oxide nanoparticles: synthesis, characterization, and biomedical applications. Nanomaterials 12(17):3066. https://doi.org/10.3390/nano12173066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashrai A, Khanam H, Aljawfi RN (2017) Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab J Chem 10:S1530-S1536. https://doi.org/10.1016/j.arabjc.2013.05.004

  • Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA (2019) Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 10:1–22. https://doi.org/10.1186/s40104-019-0368-z

    Article  CAS  Google Scholar 

  • Mostafavi E, Zarepour A, Barabadi H, Zarrabi A, Truong LB, Medina-Cruz D (2022) Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: beginning a new era in cancer theragnostic. Biotech Rep 34:e00714. https://doi.org/10.1016/j.btre.2022.e00714

    Article  CAS  Google Scholar 

  • Mydeen SS, Kumar RR, Kottaisamy M, Vasantha V (2020) Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust–induced photocatalysis. Journal of Saudi Chemical Society 24(5):393–406. https://doi.org/10.1016/j.jscs.2020.03.003

  • Narayanan P, Wilson WS, Abraham AT, Sevanan M (2012) Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. BioNanoScience 2(4):329–335. https://doi.org/10.1007/s12668-012-0061-6

  • Nargund VB, Patil RR, Vanti GL (2022) Bacillus sp. extract used to fabricate ZnO nanoparticles for their antagonist effect against phytopathogens. Biometals 35(6):1255–1269. https://doi.org/10.1007/s10534-022-00440-2

    Article  CAS  PubMed  Google Scholar 

  • Naser SS, Ghosh B, Simnani FZ, Singh D, Choudhury A, Nandi A, Sinha A, Jha E, Panda PK, Suar M, Verma SK (2023) Emerging Trends in the application of Green Synthesized Biocompatible ZnO Nanoparticles for Translational Paradigm in Cancer Therapy. J Nanotheranostics 4(3):248–279. https://doi.org/10.3390/jnt4030012

    Article  Google Scholar 

  • Nezamzadeh–Ejhieh A, Bahrami M (2015) Investigation of the photocatalytic activity of supported ZnO–TiO2 on clinoptilolite nano-particles towards photodegradation of wastewater-contained phenol. Desalin Water Treat 55(4):1096–1104. https://doi.org/10.1080/19443994.2014.922443

  • Ogunyemi SO, Abdallah Y, Zhang M, Fouad H, Hong X, Ibrahim E, Masum MMI, Hossain A, Mo J, Li B (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artificial cells, nanomedicine, and biotechnology 47(1):341–352. https://doi.org/10.1080/21691401.2018.1557671

  • Otari S, Patil R, Nadaf N, Ghosh S, Pawar S (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater 72:92–94. https://doi.org/10.1016/j.matlet.2011.12.109

  • Palanikumar L, Ramasamy SN, Balachandran C (2014) Size-dependent antimicrobial response of zinc oxide nanoparticles. IET nanobiotechnology 8(2):111–117. https://doi.org/10.1049/iet-nbt.2012.0008

  • Paret ML, Palmateer AJ, Knox GW (2013) Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. HortScience 48(2):189–192. https://doi.org/10.21273/HORTSCI.48.2.189

  • Paschke MW, Perry LG, Redente EF (2006) Zinc toxicity thresholds for reclamation forb species. Water, air, and soil pollution 170:317–330. https://doi.org/10.1007/s11270-006-3139-3

  • Patra P, Roy S, Sarkar S, Mitra S, Pradhan S, Debnath N, Goswami A (2015) Damage of lipopolysaccharides in outer cell membrane and production of ROS-mediated stress within bacteria makes nano zinc oxide a bactericidal agent. Appl Nanosci 5(7):857–866. https://doi.org/10.1007/s13204-014-0389-z

  • Pavani K, Kumar NS, Sangameswaran B (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 61(1):61–63. https://doi.org/10.33073/pjm-2012-008

  • Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Rajesh K, Kyzas GZ (2020) Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct 1211:128107. https://doi.org/10.1016/j.molstruc.2020.128107

    Article  CAS  Google Scholar 

  • Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1(02):129. https://doi.org/10.4236/ns.2009.12016

    Article  CAS  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An Y–J (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109(37):E2451-E2456. https://doi.org/10.1073/pnas.1205431109

  • Qian Y, Yao J, Russel M, Chen K, Wang X (2015) Characterization of green synthesized nano–formulation (ZnO–A. vera) and their antibacterial activity against pathogens. Environ Toxicol Pharmacol 39(2):736–746. https://doi.org/10.1016/j.etap.2015.01.015

  • Qiao J-t, Li X-m, Li F-b (2018) Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. J Hazard Mater 344:958–967. https://doi.org/10.1016/j.jhazmat.2017.11.025

  • Qu J, Luo C, Hou J (2011) Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants. Micro Nano Lett 6(3):174–176. https://doi.org/10.1049/mnl.2011.0004

  • Rajan A, Cherian E, Baskar G (2016) Biosynthesis of zinc oxide nanoparticles using aspergillus fumigatus JCF and its antibacterial activity. Int J Mod Sci Technol 1(2):52–57

    Google Scholar 

  • Rajeshkumar S, Malarkodi C, Vanaja M, Annadurai G (2016) Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J Mol Struct 1116:165–173. https://doi.org/10.1016/j.molstruc.2016.03.044

  • Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM (2018) Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and microbial technology 117:91–95. https://doi.org/10.1016/j.enzmictec.2018.06.009

  • Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 112:384–387. https://doi.org/10.1016/j.saa.2013.04.072

  • Rajput V, Minkina T, Mazarji M, Shende S, Sushkova S, Mandzhieva S, Burachevskaya M, Chaplygin V, Singh A, Jatav H (2020) Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann Agric Sci 65(2):137–143. https://doi.org/10.1016/j.aoas.2020.08.001

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57. https://doi.org/10.1007/s40003-012-0049-z

  • Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:864–870. https://doi.org/10.1016/j.saa.2014.09.105

  • Reddy MP, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41(2):379–386. https://doi.org/10.1016/j.watres.2006.09.018

  • Rehman FU, Paker NP, Khan M, Naeem M, Munis MFH, Rehman Su, Chaudhary HJ (2023) Bio-fabrication of zinc oxide nanoparticles from Picea smithiana and their potential antimicrobial activities against Xanthomonas campestris pv. Vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. World J Microbiol Biotechnol 39(7):9–16. https://doi.org/10.1016/j.matpr.2021.02.498

  • Resmi R, Yoonus J, Beena B (2021) A novel greener synthesis of ZnO nanoparticles from Nilgiri antusciliantus leaf extract and evaluation of its biomedical applications. Mater Today 46:3062–3068. https://doi.org/10.1016/j.matpr.2021.02.498

  • Rodelo CG, Salinas RA, JaimeArmenta EA, Armenta S, Galdámez-Martínez A, Castillo-Blum SE, Astudillo-de la Vega H, Grace AN, Aguilar-Salinas CA, Rodelo JG (2022) Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coord Chem Rev 457:214402. https://doi.org/10.1016/j.ccr.2021.214402

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. The Scientific World Journal 2014: 925494. https://doi.org/10.1155/2014/925494

  • Salam HA, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater 131:16–18. https://doi.org/10.1016/j.matlet.2014.05.033

  • Salih AM, Al-Qurainy F, Khan S, Tarroum M, Nadeem M, Shaikhaldein HO, Gaafar A-RZ, Alfarraj NS (2021) Biosynthesis of zinc oxide nanoparticles using Phoenix dactylifera and their effect on biomass and phytochemical compounds in Juniperus procera. Sci Rep 11(1):19136. https://doi.org/10.1038/s41598-021-98607-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies 3(4):459–465. https://doi.org/10.1016/j.reffit.2017.05.001

  • Sardella D, Gatt R, Valdramidis VP (2017) Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res Int 101:274–279. https://doi.org/10.1016/j.foodres.2017.08.019

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nature ecology & evolution 3(3):430–439. https://doi.org/10.1038/s41559-018-0793-y

  • Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett 112:180–182. https://doi.org/10.1016/j.matlet.2013.09.020

  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, De Nolf W, De La Torre-Roche R, Pagano L, Pignatello J, Uchimiya M, Gardea-Torresdey J, White JC (2017) Bioaccumulation of CeO2 nanoparticles by earthworms in biochar-amended soil: a synchrotron microspectroscopy study. Journal of agricultural and food chemistry 66(26):6609–6618. https://doi.org/10.1021/acs.jafc.7b04612

  • Shah MM, Ahmad K, Ahmad B, Shah SM, Masood H, Siddique MA, Ahmad R (2022) Recent trends in green synthesis of silver, gold, and zinc oxide nanoparticles and their application in nanosciences and toxicity: a review. Nanotechnol Environ Eng 7(4):907–922. https://doi.org/10.1007/s41204-022-00287-5

    Article  CAS  Google Scholar 

  • Sharma N, Bhandari AS (2020) Nano Magic bullets: an Ecofriendly Approach to Managing Plant Diseases. In: Sharma N, Bhandari A (eds) Bio-management of Postharvest Diseases and Mycotoxigenic Fungi. CRC Press, Doi, pp 235–264. https://doi.org/10.1201/9781003089223-13

    Chapter  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96. https://doi.org/10.1016/j.cis.2008.09.002

  • Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS (2021) Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon 7(3):e06456. https://doi.org/10.1016/j.heliyon.2021.e06456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheteiwy MS, Shaghaleh H, Hamoud YA, Holford P, Shao H, Qi W, Hashmi MZ, Wu T (2021) Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. Environ Sci Pollut Res 28(28):36942–36966. https://doi.org/10.1007/s11356-021-14542-w

    Article  CAS  Google Scholar 

  • Shi M, McHugh KJ (2023) Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev 30:114904. https://doi.org/10.1016/j.addr.2023.114904

    Article  CAS  Google Scholar 

  • Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. Sci Med Central 3:1033

    Google Scholar 

  • Siddiqui Z, Khan A, Khan M, Abd-Allah E (2018) Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris Medik.). Acta Phytopathologica et Entomologica Hungarica 53(2):195–211. https://doi.org/10.1556/038.53.2018.012

  • Siddiqui ZA, Parveen A, Ahmad L, Hashem A (2019) Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae 249:374–382. https://doi.org/10.1016/j.scienta.2019.01.054

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AE-AM, Soliman AM, El-Dougdoug NK (2021) Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules 26(5):1337. https://doi.org/10.3390/molecules26051337

  • Suba S, Vijayakumar S, Vidhya E, Punitha V, Nilavukkarasi M (2021) Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies. Sensors International 2:100104. https://doi.org/10.1016/j.sintl.2021.100104

  • Sumanth B, Lakshmeesha TR, Ansari MA, Alzohairy MA, Udayashankar AC, Shobha B, Niranjana SR, Srinivas C, Almatroudi A (2020) Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its nanoantibiotic potential. Int J Nanomedicine 15:8519. https://doi.org/10.2147/IJN.S271743

  • Sun Q, Li J, Le T (2018) Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. J Agric Food Chem 66(43):11209–11220. https://doi.org/10.1021/acs.jafc.8b03210

  • Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26(5):1294–1299. https://doi.org/10.1016/j.apt.2015.07.001

  • Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B (2023) Nanomicrobiology: emerging trends in microbial synthesis of nanomaterials and their applications. J Clust Sci 34(2):639–664. https://doi.org/10.1007/s10876-022-02256-z

    Article  CAS  Google Scholar 

  • Tayel AA, EL-TRAS WF, Moussa S, EL‐BAZ AF, Mahrous H, Salem MF, Brimer L (2011) Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Saf 31(2):211–218. https://doi.org/10.1111/j.1745-4565.2010.00287.x

  • Thema F, Manikandan E, Dhlamini M, Maaza M (2015) Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater 161:124–127. https://doi.org/10.1016/j.matlet.2015.08.052

  • Tian T, Wang Y, Wang H, Zhu Z, Xiao Z (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111(2):488–496. https://doi.org/10.1002/jcb.22733

  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006. https://doi.org/10.1016/j.scitotenv.2009.11.003

  • Tripathi R, Bhadwal AS, Gupta RK, Singh P, Shrivastav A, Shrivastav B (2014) ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity. J Photochem Photobiol B: Biol 141:288–295. https://doi.org/10.1016/j.jphotobiol.2014.10.001

    Article  CAS  Google Scholar 

  • Uddin MN, Desai F, Asmatulu E (2021) Review of bioaccumulation, biomagnification, and biotransformation of engineered nanomaterials. In: Kumar V, Guleria P, Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanotoxicology and nanoecotoxicology Vol. 2. Environmental Chemistry for a sustainable world, vol 67. Springer International Publishing, Cham. DOI: https://doi.org/10.1007/978-3-030-69492-0_6

    Chapter  Google Scholar 

  • Umar H, Kavaz D, Rizaner N (2019) Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International journal of nanomedicine 14:87–100. https://doi.org/10.2147/IJN.S186888

  • Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Rico-Garcia E, Ocampo-Velazquez RV, Avila-Juarez L, Torres-Pacheco I (2020) Nanoparticles as potential antivirals in agriculture. Agriculture 10(10):444. https://doi.org/10.3390/agriculture10100444

    Article  CAS  Google Scholar 

  • Velmurugan P, Shim J, You Y, Choi S, Kamala-Kannan S, Lee K-J, Kim HJ, Oh B-T (2010) Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. J Hazard Mater 182(1–3):317–324. https://doi.org/10.1016/j.jhazmat.2010.06.032

  • Vidya C, Hiremath S, Chandraprabha M, Antonyraj ML, Gopal IV, Jain A, Bansal K (2013) Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol 1(1):118–120

    Google Scholar 

  • Wang X, Wu T (2023) An update on the biological effects of quantum dots: from environmental fate to risk assessment based on multiple biological models. Sci Total Environ 879:163166. https://doi.org/10.1016/j.scitotenv.2023.163166

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Alenius H, El-Nezami H, Karisola P (2022) A New look at the Effects of Engineered ZnO and TiO2 Nanoparticles: evidence from Transcriptomics Studies. Nanomaterials 12(8):1247. https://doi.org/10.3390/nano12081247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani A, Shah M (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. Journal of Applied Pharmaceutical Science 2(3):40–44. https://doi.org/10.7324/JAPS.2012.2307

  • Watson J-L, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. BioMetals 28(1):101–112. https://doi.org/10.1007/s10534-014-9806-8

  • Wu H, Tito N, Giraldo JP (2017) Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS nano 11(11):11283–11297. https://doi.org/10.1021/acsnano.7b05723

  • Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8):085102. https://doi.org/10.1088/0957-4484/20/8/085102

    Article  CAS  PubMed  Google Scholar 

  • Yedurkar S, Maurya C, Mahanwar P (2016) Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract—a green approach. Open Journal of Synthesis Theory and Applications 5(1):1–14. https://doi.org/10.1088/0957-4484/20/8/085102

  • Young M, Ozcan A, Myers ME, Johnson EG, Graham JH, Santra S (2017) Multimodal generally recognized as safe ZnO/nanocopper composite: A novel antimicrobial material for the management of citrus phytopathogens. J Agric Food Chem 66(26):6604–6608. https://doi.org/10.1021/acs.jafc.7b02526

  • Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C Mater Biol Appl 1(41):17–27. https://doi.org/10.1016/j.msec.2014.04.025

  • Zeghoud S, Hemmami H, Seghir BB, Amor IB, Kouadri I, Rebiai A, Messaoudi M, Ahmed S, Pohl P, Simal-Gandara J (2022) A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Mater Today Commun 22:104747. https://doi.org/10.1016/j.mtcomm.2022.104747

    Article  CAS  Google Scholar 

  • Zhang W, Xiao B, Fang T (2018) Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. Chemosphere 191:324–334. https://doi.org/10.1016/j.chemosphere.2017.10.016

  • Zheng Y, Huang Y, Shi H, Fu L (2019) Green biosynthesis of ZnO nanoparticles by Plectranthus amboinicus leaf extract and their application for electrochemical determination of norfloxacin. Inorganic and Nano-Metal Chemistry 49(9):277–282. https://doi.org/10.1080/24701556.2019.1661441

Download references

Acknowledgements

We greatly appreciate the helpful comments from Prof. Dr. Marc Fuchs, School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology, Cornell University, USA and Prof. Dr. Ernest C. Bernard, Entomology and Plant Pathology, The University of Tennessee, USA about improving the quality of review paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HJC and SUR conceptualized the article; FUR is the main author of this article and wrote the article draft; NPP helped in data collection; MTJ and MFHM revised the paper.

Corresponding authors

Correspondence to Shafiq ur Rehman or Hassan Javed Chaudhary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, F.u., Paker, N.P., Rehman, S.u. et al. Zinc oxide nanoparticles: biogenesis and applications against phytopathogens. J Plant Pathol 106, 45–65 (2024). https://doi.org/10.1007/s42161-023-01522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-023-01522-x

Keywords

Navigation