Skip to main content

Advertisement

Log in

An Evaluation Method for Automotive Technical and Comprehensive Performance

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

An objective evaluation scheme for automotive technical and comprehensive performance could provide critical and instructive insights for academic research, engineering practice, and commercial marketing of vehicles. In this paper, the technical performance index \(A = S/\left( {T_{1} \cdot T_{2} } \right){ }\) \(({\text{m}}/({\text{s}}^{2} \cdot \;{\text{L}}))\) and comprehensive performance index \(F = M \cdot S/\left( {T_{1} \cdot T_{2} } \right),\) (\({\text{kN}}\cdot\;{\text{L}}^{ - 1}\), where \(M\) is the vehicle mass) are formulated by incorporating the vehicle 0–100 \( {\text{km}}\cdot\;{\text{h}}^{ - 1}\) acceleration duration \({ }T_{1}\), 100–0 \( {\text{km}}\cdot\;{\text{h}}^{ - 1}\) braking duration \({ }T_{2}\), and fuel economy \(S\) (mileage per liter fuel at constant speed) to assess the vehicle’s longitudinal dynamic performance. \(A\) and \(F\) offer a clear physical implication of a vehicle’s acceleration capability and traction efficiency acquired per unit of fuel consumption, respectively. These indexes are used for wide case studies of popular market sedans and SUVs of joint ventures (JVs) and domestic brands in China over the last 17 years. The findings prove that this approach could be effectively and reliably utilized for the objective evaluation and analysis of the technical and comprehensive performance of automotive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao, F., Liu, Z., Hao, H., Wang, Y., Zhao, S.: A comprehensive evaluation system for automotive industry of different nations. Chinese J. Eng. Des. 6(2), 79–86 (2016). https://doi.org/10.3969/j.issn.2095-1469.2016.02.01

    Article  Google Scholar 

  2. Liu, D., Wang, T., Gao, Y., Li, H.: Research on the e-valuation method of vehicle performance. Mech. Sci. Technol. 31(03), 379–383 (2012). https://doi.org/10.13433/j.cnki.1003-8728.2012.03.034

    Article  Google Scholar 

  3. Huang, W., Wen, D., Geng, J., Zheng, N.: Task-specific performance evaluation of UGVs: Case studies at the IVFC. IEEE trans. Intell. Transp. Syst. 15(5), 1969–1979 (2014). https://doi.org/10.1109/TITS.2014.2308540

    Article  Google Scholar 

  4. Zhao, F., Liu, Z.: Strategic judgment on building a strong automotive industry in China. Chinese J. Eng. Des. 4(05), 313–318 (2014). https://doi.org/10.3969/j.issn.2095-1469.2014.05.01

    Article  Google Scholar 

  5. Zhong, Z., Qiao, Y., Wang, J., et al.: Summary of strategy research on automobile power in new era(I). SS-CAE. 20(01), 1–10 (2018). https://doi.org/10.15302/J-SSCAE-2018.01.001

    Article  Google Scholar 

  6. Creutzig, F., Papson, A., Schipper, L., Kammen, D.M.: Economic and environmental evaluation of compressed-air cars. Environ. Res. Lett. (2009). https://doi.org/10.1088/1748-9326/4/4/044011

    Article  Google Scholar 

  7. Zhang, X., Ding, C., Zhang, T.: A hierarchical model for automotive PEM fuel cell system comprehensive evaluation and comparison. Int. J. Hydrog. Energy 39(3), 1476–1484 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.172

    Article  Google Scholar 

  8. Jiang, K., Luo, Z., Feng, Z., Huang, Z., Yu, Z.: Subjective evaluation of automobile power performance based on RA-AHP. Cogn. Technol. Work 20, 413–424 (2018). https://doi.org/10.1007/s10111-018-0488-9

    Article  Google Scholar 

  9. Zhu, J., Khajepour, A., Esmailzadeh, E., Kasaiezadeh, A.: Ride quality evaluation of a vehicle with a planar suspension system. Veh. Syst. Dyn. 50(3), 395–413 (2012). https://doi.org/10.1080/00423114.2011.592591

    Article  Google Scholar 

  10. Wang, B., Guan, H., Lu, P., Zhan, J.: Novel evaluation method of vehicle suspension performance based on concept of wheel turn center. Chin. J. Mech. Eng. 28(5), 935–944 (2015). https://doi.org/10.3901/CJME.2015.0724.101

    Article  Google Scholar 

  11. Damien, S.C.: Reducing informational asymmetry impacts choices and improves safety: An evaluation of automobile crash tests. J. Risk Insur. 89, 697–723 (2022). https://doi.org/10.1111/jori.12375

    Article  Google Scholar 

  12. Sohrabi, S., Khodadadi, A., Mousavi, S.M., Dadashova, B., Lord, D.: Quantifying the automated vehicle safety performance: a scoping review of the literature, evaluation of methods, and directions for future research. Accid. Anal. Prev. (2021). https://doi.org/10.1016/j.aap.2021.106003

    Article  Google Scholar 

  13. Kim, D., Lee, S., Lee, H., Choi, I., Shin, J., Park, K.: Development of quantitative methods for evaluating failure safety of Level 3 autonomous vehicles. J. Korea Inst. Intell. Transp. Syst. 18, 91–102 (2019). https://doi.org/10.12815/kits.2019.18.1.91

    Article  Google Scholar 

  14. Chen, S., Shi, T., Wang, D., Chen, J.: Multi-objective optimization of the vehicle ride comfort based on kriging approximate model and NSGA-II. J. Mech. Sci. Technol. 29(3), 1007–1018 (2015). https://doi.org/10.1007/s12206-015-0215-x

    Article  Google Scholar 

  15. Li, S., Huang, M., Guo, M., YU, M.: Evaluation model of autonomous vehicles speed suitability based on overtaking frequency. Sens. Basel. 21(2), 371 (2021). https://doi.org/10.3390/s21020371

  16. Kumar, A., Thakura, P.R.: Performance evaluation of hybrid electric vehicles for sustainable transport system. IJITEE. 8(11), 195–201 (2019). https://doi.org/10.35940/ijitee.K1280.0981119

    Article  Google Scholar 

  17. Kong, F., Guo, K., Zong, C.: Study on grey relations-hip between objective and subjective evaluation of motor vehicle maneuverability and stability based on genetic algorithms. Chin. J. Mech. Eng. 40(7), 119–123 (2014). https://doi.org/10.3321/j.issn:0577-6686.2004.07.024

    Article  Google Scholar 

  18. Zhao, J., Liu, J., Yang, L., He, P.: Exploring the relationships between subjective evaluations and objective metrics of vehicle dynamic performance. J. Adv. Transport. (2018). https://doi.org/10.1155/2018/2638474

    Article  Google Scholar 

  19. Sun, Y., Tao, G., Xiong, G., Chen, H.: The fuzzy-AHP evaluation method for unmanned ground vehicles. Appl. Math. Inf. Sci. 7, 653–658 (2013). https://doi.org/10.12785/amis/070232

    Article  Google Scholar 

  20. Chen, X., Zhong, J., Sha, F., Zhong, Z.: Research on innovative plug-in hybrid electric vehicle comprehensive energy consumption evaluation method based on statistic energy consumption. Sci. Prog. 104(4), (2021). https://doi.org/10.1177/00368504211050284

    Article  Google Scholar 

  21. Song, K., Chen, H., Wen, P., et al.: A comprehensive evaluation framework to evaluate energy management strategies of fuel cell electric vehicles. Electrochim. Acta 292, 960–973 (2018). https://doi.org/10.1016/j.electacta.2018.09.166

    Article  Google Scholar 

  22. Granovskii, M., Dincer, I., Rosen, M.A.: Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. J. Power Sour. 159, 1186–1193 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.086

    Article  Google Scholar 

  23. Offer, G.J., Howey, D.A., Contestabile, M., et al.: Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energ. Policy. 38(1), 24–29 (2010). https://doi.org/10.1016/j.enpol.2009.08.040

    Article  Google Scholar 

  24. Ouyang, H., Xiao, Y., Hu, S., Tang, X., et al.: Establishment and application of comprehensive evaluation method for automobile technical performance. J. Cent. South. Univ. 51(03), 650–660 (2020). https://doi.org/10.11817/j.issn.1672-7207.2020.03.009

    Article  Google Scholar 

  25. Das, M.C., Pandey, A., Mahato, A.K., Singh, R.K.: Comparative performance of electric vehicles using evaluation of mixed data. Opsearch 56(3), 1067–1090 (2019). https://doi.org/10.1007/s12597-019-00398-9

    Article  Google Scholar 

  26. Yu, Y.: Technology roadmap for energy saving and new energy vehicles 2.0 leads the development of China’s automobile industry. Mod. Compon. 11, 8–10 (2020). https://doi.org/10.3969/j.issn.1672-657X.2020.11.002

    Article  Google Scholar 

  27. Meng, F., Jin, X.: Evaluation of the development cap-ability of the new energy vehicle industry: An empirical study from China. Sustain. Basel. (2019). https://doi.org/10.3390/su11092635

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (Project Name: Transmission mechanics and performance optimization of confined granular media self-adaptive differential; No. 51475475) and the Changsha Natural Science Foundation of China (Project Name: Structure principle and performance prediction of the intelligent tire; No. kq2014130) have provided funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwu Ouyang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Ouyang, X., Lu, R. et al. An Evaluation Method for Automotive Technical and Comprehensive Performance. Automot. Innov. 6, 231–243 (2023). https://doi.org/10.1007/s42154-022-00213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-022-00213-0

Keywords

Navigation