Skip to main content
Log in

A recent review of aviation fuels and sustainable aviation fuels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aviation fuels are essential for flight transportation. The increasing demand for such fuels threatens the present efforts to mitigate global warming. Changing to renewable energy sources and hydrogen to drive airplanes is not ready and will take a few decades. Therefore, alternative fuels such as sustainable aviation fuels (SAFs, also so-called bio-jet fuels) could play an excellent role in mitigating greenhouse emissions. SAFs encompass blends of bio and synthetic fuels. Some SAF pathways have already been certified (such as oil-to-jet, alcohol-to-jet, gas-to-jet, and sugar-to-jet), and some are on the way to being certified. This review starts by providing a detailed overview of the current status of aviation fuels, including their growth, types, and emission trends. After that, it comprehensively delves into a thorough discussion of SAFs, covering various aspects such as their types, combustion properties, production technologies and pathways, cost evolution, and life cycle assessments. The paper discusses the SAFs’ future prospects while providing practical recommendations based on the analysis. It was shown that the oil-to-fuel (HEFA) pathway is more mature with less carbon emissions. SAFs face challenges, including high costs, limited production scale, feedstock availability, energy-intensive production methods, land-use competition, potential indirect environmental impacts, certification standards, infrastructure, and public acceptance. Much research is needed to reduce SAF costs substantially less than conventional aviation fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ADV. LI-ION:

Advanced lithium-ion battery

AG:

Algae

Al:

Alkaline water electrolysis

APR:

Aqueous phase reforming

ATJ:

Alcohol-to-jet

CHJ:

Catalytic hydrothermolytic jet

DAC:

Direct air capture

DSHC:

Direct sugar to hydrocarbon

EC:

Edible crops

FT:

Fischer–Tropsch process

HDCJ:

Hydrotreated depolymerized cellulosic jet

HEFA:

Hydroprocessed esters and fatty acids

IH2:

Integrated hydropyrolysis and hydroconversion

LI-AIR:

Lithium-air battery

LB:

Lignocellulosic biomass

LI-ION:

Lithium-ion battery

LI–S:

Lithium-sulfur battery

LI-SSB:

Solid-state battery

LUC:

Land use change

MeOH:

Methanol synthesis process

NEC:

Non-edible crops

OW:

Oleochemical waste

PEM:

Proton/polymer exchange membrane water electrolysis

PS:

Point source carbon-capturing

SAF:

Sustainable aviation fuels

SF:

Syngas fermentation

SOE:

Solid oxide electrolysis (water electrolysis or co-electrolysis)

SuF:

Sugar fermentation and alcohol upgrading

THC:

Thermochemical water splitting

APR:

Aqueous phase reforming

ARA:

Applied research associates

ASTM:

American society for testing and materials

ATAG:

Air transport action group

ATJ:

Alcohol-to-jet

CH:

Catalytic hydrothermolysis

CHJ:

Catalytic hydrothermolysis jet fuel

CID:

Cetane ignition delay

CJF:

Conventional jet fuels

CTH:

Catalytic transfer hydrogenation

DCN:

Derived cetane number

DSHC:

Direct sugar-to-hydrocarbon

FEL:

Flame extinction limit

FIT:

Fuel ignition tester

FOG:

Fats, oils, and greases

FT:

Fisher–Tropsch

FTKs:

Freight ton-kilometers

GHG:

Greenhouse gas

GTJ:

Gas-to-jet

GWP:

Global warming potential

HDCJ:

Hydroprocessed depolymerized cellulosic jet

HFS:

Hydroprocessing of fermented sugars

IATA:

International Air Transport Association

ICAO:

International Civil Aviation Organization

IQT:

Ignition quality tester

LCA:

Life cycle assessment

LFS:

Laminar flame speed

LNG:

Liquefied natural gas

MJFSP:

Minimum jet fuel selling price

NZE:

Net-zero emission

OTJ:

Oil-to-jet

RCM:

Rapid compression machine

RPKs:

Revenue passenger kilometers

SIP:

Synthesized isoparaffins

SP:

Smoke point

SPK:

Synthesized paraffinic kerosene

STJ:

Sugar-to-jet

USD:

United State dollar

References

  1. Association IAT. IATA forecast predicts 8.2 billion air travelers in 2037. Retrieved July 2018;1:2019.

  2. US EPA OAR. Fast facts on transportation greenhouse gas emissions 2015.

  3. Osaki K. US energy information administration (EIA): 2019 Edition US annual energy outlook report (AEO2019). Haikan Gijutsu. 2019;61(8):32–43.

    Google Scholar 

  4. Detrow Scott C. Aviation industry looks to solve a carbon problem. Sci Am 2022.

  5. Hileman JI, De la Rosa BE, Bonnefoy PA, Carter NA. The carbon dioxide challenge facing aviation. Prog Aerosp Sci. 2013;63:84–95.

    Article  Google Scholar 

  6. Tanzil AH, Brandt K, Wolcott M, Zhang X, Garcia-Perez M. Strategic assessment of sustainable aviation fuel production technologies: Yield improvement and cost reduction opportunities. Biomass Bioenerg. 2021;145: 105942.

    Article  CAS  Google Scholar 

  7. Detsios N, Theodoraki S, Maragoudaki L, Atsonios K, Grammelis P, Orfanoudakis NG. Recent advances on alternative aviation fuels/pathways: a critical review. Energies. 2023. https://doi.org/10.3390/en16041904.

    Article  Google Scholar 

  8. Pérez ATE, Camargo M, Rincón PCN, Marchant MA. Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: a bibliographic analysis. Renew Sustain Energy Rev. 2017;69:350–9.

    Article  Google Scholar 

  9. Zandi Atashbar N, Labadie N, Prins C. Modelling and optimisation of biomass supply chains: a review. Int J Prod Res. 2018;56:3482–506.

    Article  Google Scholar 

  10. Cambero C, Sowlati T. Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains. Appl Energy. 2016;178:721–35.

    Article  Google Scholar 

  11. Cobuloglu HI, Büyüktahtakın İE. A mixed-integer optimization model for the economic and environmental analysis of biomass production. Biomass Bioenerg. 2014;67:8–23.

    Article  CAS  Google Scholar 

  12. Inman D, Warner E, Stright D, Macknick J, Peck C. Estimating biofuel feedstock water footprints using system dynamics. J Soil Water Conserv. 2016;71:343–55.

    Article  Google Scholar 

  13. Li X, Zipp KY. Dynamics and uncertainty in land use conversion for perennial energy crop production: Exploring effects of payments for ecosystem services policies. Agric Resour Econ Rev. 2019;48:328–58.

    Article  Google Scholar 

  14. Palmeros Parada M, Asveld L, Osseweijer P, Posada JA. Setting the design space of biorefineries through sustainability values, a practical approach. Biofuels Bioprod Biorefining. 2018;12:29–44.

    Article  Google Scholar 

  15. Ravi V, Gao AH, Martinkus NB, Wolcott MP, Lamb BK. Air quality and health impacts of an aviation biofuel supply chain using forest residue in the northwestern United States. Environ Sci Technol. 2018;52:4154–62.

    Article  CAS  PubMed  Google Scholar 

  16. Heyne J, Rauch B, Le Clercq P, Colket M. Sustainable aviation fuel prescreening tools and procedures. Fuel. 2021;290: 120004.

    Article  CAS  Google Scholar 

  17. Ritchie BW, Sie L, Gössling S, Dwyer L. Effects of climate change policies on aviation carbon offsetting: a three-year panel study. J Sustain Tour. 2020;28:337–60. https://doi.org/10.1080/09669582.2019.1624762.

    Article  Google Scholar 

  18. Gössling S. Risks, resilience, and pathways to sustainable aviation: A COVID-19 perspective. J Air Transp Manag. 2020;89:101933. https://doi.org/10.1016/j.jairtraman.2020.101933.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rizzi P, Rizzi C. The responses of the market concerning the impact of COVID-19 on different sectors of the aviation industry impact COVID-19 world aviat. Ind. 2021. https://doi.org/10.1142/9789811246142_0003.

    Article  Google Scholar 

  20. Gultepe I, Sharman R, Williams PD, Zhou B, Ellrod G, Minnis P, et al. A review of high impact weather for aviation meteorology. Pure Appl Geophys. 2019;176:1869–921. https://doi.org/10.1007/s00024-019-02168-6.

    Article  Google Scholar 

  21. Xu S, Chan HK, Zhang T. Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach. Transp Res Part E Logist Transp Rev. 2019;122:169–80. https://doi.org/10.1016/j.tre.2018.12.005.

    Article  Google Scholar 

  22. Zhou W, Wang T, Yu Y, Chen D, Zhu B. Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030. Appl Energy. 2016;175:100–8. https://doi.org/10.1016/j.apenergy.2016.05.004.

    Article  Google Scholar 

  23. Gao Z, Lin P-N, Chakraborty A, Sells BE, Briceno SI, Crossley WA, et al. Challenges and opportunities: a strategic general aviation exploratory analysis for 2030. Sci Meet AIAA Aerosp. 2018. https://doi.org/10.2514/6.2018-2009.

    Article  Google Scholar 

  24. Albers S, Rundshagen V. European airlines′ strategic responses to the COVID-19 pandemic (January-May, 2020). J Air Transp Manag. 2020;87:101863. https://doi.org/10.1016/j.jairtraman.2020.101863.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kharas H. The unprecedented expansion of the global middle class: An update 2017.

  26. Forsyth P. The impacts of emerging aviation trends on airport infrastructure. J Air Transp Manag. 2007;13:45–52. https://doi.org/10.1016/j.jairtraman.2006.10.004.

    Article  Google Scholar 

  27. International Air Transport Association. Annual Review. | IATA. Iata. 2021;2021:1–43.

    Google Scholar 

  28. Abu-Rayash A, Dincer I. Analysis of mobility trends during the COVID-19 coronavirus pandemic: Exploring the impacts on global aviation and travel in selected cities. Energy Res Soc Sci. 2020;68:101693. https://doi.org/10.1016/j.erss.2020.101693.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Suau-Sanchez P, Voltes-Dorta A, Cugueró-Escofet N. An early assessment of the impact of COVID-19 on air transport: Just another crisis or the end of aviation as we know it? J Transp Geogr. 2020;86: 102749. https://doi.org/10.1016/j.jtrangeo.2020.102749.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu A, Kim YR, O’Connell JF. COVID-19 and the aviation industry: The interrelationship between the spread of the COVID-19 pandemic and the frequency of flights on the EU market. Ann Tour Res. 2021;91:103298. https://doi.org/10.1016/j.annals.2021.103298.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Whitelaw S, Mamas MA, Topol E, Van Spall HGC. Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digit Heal. 2020;2:e435–40. https://doi.org/10.1016/S2589-7500(20)30142-4.

    Article  Google Scholar 

  32. Ghosh J. A critique of the Indian government’s response to the COVID-19 pandemic. J Ind Bus Econ. 2020;47:519–30. https://doi.org/10.1007/s40812-020-00170-x.

    Article  Google Scholar 

  33. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav. 2021;5:529–38. https://doi.org/10.1038/s41562-021-01079-8.

    Article  PubMed  Google Scholar 

  34. Flightradar24. Live flight tracker—real-time flight tracker map. Flightradar24 2023.

  35. Nguyen XP, Hoang AT, Ölçer AI, Huynh TT. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Sour Part A Recover Util Environ Eff. 2021. https://doi.org/10.1080/15567036.2021.1879969.

    Article  Google Scholar 

  36. Ray RL, Singh VP, Singh SK, Acharya BS, He Y. What is the impact of COVID-19 pandemic on global carbon emissions? Sci Total Environ. 2022;816:151503. https://doi.org/10.1016/j.scitotenv.2021.151503.

    Article  CAS  PubMed  Google Scholar 

  37. Economic Impacts of COVID-19 on Civil Aviation 2022.

  38. Abate M, Christidis P, Purwanto AJ. Government support to airlines in the aftermath of the COVID-19 pandemic. J Air Transp Manag. 2020;89:101931. https://doi.org/10.1016/j.jairtraman.2020.101931.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ryley T, Baumeister S, Coulter L. Climate change influences on aviation: A literature review. Transp Policy. 2020;92:55–64. https://doi.org/10.1016/j.tranpol.2020.04.010.

    Article  Google Scholar 

  40. Baumeister S. Mitigating the climate change impacts of aviation through behavioural change. Transp Res Proced. 2020;48:2006–17. https://doi.org/10.1016/j.trpro.2020.08.230.

    Article  Google Scholar 

  41. Liu G, Yan B, Chen G. Technical review on jet fuel production. Renew Sustain Energy Rev. 2013;25:59–70. https://doi.org/10.1016/j.rser.2013.03.025.

    Article  CAS  Google Scholar 

  42. Pearlson M, Wollersheim C, Hileman J. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuels Bioprod Biorefining. 2013;7:89–96. https://doi.org/10.1002/bbb.1378.

    Article  CAS  Google Scholar 

  43. Macilree J, Duval DT. Aeropolitics in a post-COVID-19 world. J Air Transp Manag. 2020;88:101864. https://doi.org/10.1016/j.jairtraman.2020.101864.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tanrıverdi G, Bakır M, Merkert R. What can we learn from the JATM literature for the future of aviation post Covid-19?—A bibliometric and visualization analysis. J Air Transp Manag. 2020;89:101916. https://doi.org/10.1016/j.jairtraman.2020.101916.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Short-Term Energy Outlook—U.S. Energy information administration (EIA) 2022.

  46. Khan S, Kay Lup AN, Qureshi KM, Abnisa F, Wan Daud WMA, Patah MFA. A review on deoxygenation of triglycerides for jet fuel range hydrocarbons. J Anal Appl Pyrolysis. 2019;140:1–24. https://doi.org/10.1016/j.jaap.2019.03.005.

    Article  CAS  Google Scholar 

  47. Flora G, Kosir ST, Behnke L, Stachler RD, Heyne JS, Zabarnick S, et al. Properties calculator and optimization for drop-in alternative jet fuel blends. AIAA Scitech Forum Am Inst Aeronaut Astronaut. 2019. https://doi.org/10.2514/6.2019-2368.

    Article  Google Scholar 

  48. Nakagawa Y, Tamura M, Tomishige K. Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass. Fuel Process Technol. 2019;193:404–22. https://doi.org/10.1016/j.fuproc.2019.05.028.

    Article  CAS  Google Scholar 

  49. Brooks KP, Snowden-Swan LJ, Jones SB, Butcher MG, Lee GS, Anderson DM. Chapter 6—Low-Carbon Aviation Fuel Through the Alcohol to Jet Pathway. In: Chuck CJBT-B for A, editor. CJ Chuck. 2016. https://doi.org/10.1016/B978-0-12-804568-8.00006-8.

    Article  Google Scholar 

  50. West ZJ, Yamada T, Bruening CR, Cook RL, Mueller SS, Shafer LM, et al. Investigation of water interactions with petroleum-derived and synthetic aviation turbine fuels. Energy Fuels. 2018;32:1166–78. https://doi.org/10.1021/acs.energyfuels.7b02844.

    Article  CAS  Google Scholar 

  51. Maurice LQ, Lander H, Edwards T, Harrison WE. Advanced aviation fuels: a look ahead via a historical perspective. Fuel. 2001;80:747–56. https://doi.org/10.1016/S0016-2361(00)00142-3.

    Article  CAS  Google Scholar 

  52. Yildirim U, Abanteriba S. Manufacture, qualification and approval of new aviation turbine fuels and additives. Proced Eng. 2012;49:310–5. https://doi.org/10.1016/j.proeng.2012.10.142.

    Article  CAS  Google Scholar 

  53. Singh J, Sharma SK, Srivastava R. Managing fuel efficiency in the aviation sector: challenges. Accompl Oppor FIIB Bus Rev. 2018;7:244–51. https://doi.org/10.1177/2319714518814073.

    Article  Google Scholar 

  54. Nygren E, Aleklett K, Höök M. Aviation fuel and future oil production scenarios. Energy Policy. 2009;37:4003–10. https://doi.org/10.1016/j.enpol.2009.04.048.

    Article  Google Scholar 

  55. Holladay J, Abdullah Z, Heyne J. Sustainable aviation fuel: Review of technical pathways 2020.

  56. Mai DTT. Revising the EU ETS and CORSIA in times of the COVID-19 pandemic: challenges for reducing global aviation emissions. Clim Policy. 2021;21:1357–67.

    Article  Google Scholar 

  57. IATA. Regional Profit Performance 2019.

  58. Owen B, Lee DS, Lim L. Flying into the Future: Aviation Emissions Scenarios to 2050. Environ Sci Technol. 2010;44:2255–60. https://doi.org/10.1021/es902530z.

    Article  CAS  PubMed  Google Scholar 

  59. Direct CO2 emissions from fossil jet kerosene combustion in the Net Zero Scenario, 2000–2030—Charts—Data & Statistics. IEA 2022.

  60. Dube K, Nhamo G. Climate change and the aviation sector: A focus on the Victoria Falls tourism route. Environ Dev. 2019;29:5–15.

    Article  Google Scholar 

  61. Niklaß M, Lührs B, Grewe V, Dahlmann K, Luchkova T, Linke F, et al. Potential to reduce the climate impact of aviation by climate restricted airspaces. Transp Policy. 2019;83:102–10.

    Article  Google Scholar 

  62. Atasoy VE, Suzer AE, Ekici S. Environmental impact of pollutants from commercial aircrafts at Hasan Polatkan airport. Aircr Eng Aerosp Technol. 2021;93:417–28. https://doi.org/10.1108/AEAT-08-2020-0160.

    Article  Google Scholar 

  63. Maruhashi J, Grewe V, Frömming C, Jöckel P, Dedoussi IC. Transport patterns of global aviation NO x and their short-term O 3 radiative forcing–a machine learning approach. Atmos Chem Phys. 2022;22(21):14253–82.

    Article  CAS  Google Scholar 

  64. Lee DS, Fahey DW, Skowron A, Allen MR, Burkhardt U, Chen Q, et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos Environ. 2021;244:117834. https://doi.org/10.1016/j.atmosenv.2020.117834.

    Article  CAS  Google Scholar 

  65. Grewe V, Matthes S, Dahlmann K. The contribution of aviation NOx emissions to climate change: are we ignoring methodological flaws? Environ Res Lett. 2019;14: 121003.

    Article  CAS  Google Scholar 

  66. Terrenoire E, Hauglustaine DA, Gasser T, Penanhoat O. The contribution of carbon dioxide emissions from the aviation sector to future climate change. Environ Res Lett. 2019;14:84019.

    Article  CAS  Google Scholar 

  67. Olsthoorn X. Carbon dioxide emissions from international aviation: 1950–2050. J Air Transp Manag. 2001;7:87–93. https://doi.org/10.1016/S0969-6997(00)00031-4.

    Article  Google Scholar 

  68. Larsson J, Elofsson A, Sterner T, Åkerman J. International and national climate policies for aviation: a review. Clim Policy. 2019;19:787–99. https://doi.org/10.1080/14693062.2018.1562871.

    Article  Google Scholar 

  69. Lawrence P. Meeting the challenge of aviation emissions: an aircraft industry perspective. Technol Anal Strateg Manag. 2009;21:79–92. https://doi.org/10.1080/09537320802557327.

    Article  Google Scholar 

  70. Fageda X, Teixidó JJ. Pricing carbon in the aviation sector: evidence from the European emissions trading system. J Environ Econ Manage. 2022;111:102591. https://doi.org/10.1016/j.jeem.2021.102591.

    Article  Google Scholar 

  71. Chao H, Agusdinata DB, DeLaurentis D, Stechel EB. Carbon offsetting and reduction scheme with sustainable aviation fuel options: Fleet-level carbon emissions impacts for U.S. airlines. Transp Res Part D Transp Environ. 2019;75:42–56. https://doi.org/10.1016/j.trd.2019.08.015.

    Article  Google Scholar 

  72. Zhang J, Zhang S, Wu R, Duan M, Zhang D, Wu Y, et al. The new CORSIA baseline has limited motivation to promote the green recovery of global aviation. Environ Pollut. 2021;289:117833. https://doi.org/10.1016/j.envpol.2021.117833.

    Article  CAS  PubMed  Google Scholar 

  73. Tsalis TA, Malamateniou KE, Koulouriotis D, Nikolaou IE. New challenges for corporate sustainability reporting: United Nations’ 2030 Agenda for sustainable development and the sustainable development goals. Corp Soc Responsib Environ Manag. 2020;27:1617–29. https://doi.org/10.1002/csr.1910.

    Article  Google Scholar 

  74. Akimoto K, Sano F, Oda J, Kanaboshi H, Nakano Y. Climate change mitigation measures for global net-zero emissions and the roles of CO2 capture and utilization and direct air capture. Energy Clim Chang. 2021;2: 100057.

    Article  CAS  Google Scholar 

  75. Barzkar A, Ghassemi M. Electric power systems in more and all electric aircraft: a review. IEEE Access. 2020;8:169314–32. https://doi.org/10.1109/ACCESS.2020.3024168.

    Article  Google Scholar 

  76. Barbosa FC. Aircraft engine technology review-the pathways for an efficient, cleaner and quieter aviation industry 2020.

  77. Kousoulidou M, Lonza L. Biofuels in aviation: fuel demand and CO2 emissions evolution in Europe toward 2030. Transp Res Part D Transp Environ. 2016;46:166–81. https://doi.org/10.1016/j.trd.2016.03.018.

    Article  Google Scholar 

  78. Yang J, Xin Z, Corscadden K, Niu H. An overview on performance characteristics of bio-jet fuels. Fuel. 2019;1(237):916–36. https://doi.org/10.1016/j.fuel.2018.10.079.

    Article  CAS  Google Scholar 

  79. Han GB, Jang JH, Ahn MH, Jung BH. Recent application of bio-alcohol: bio-jet fuel. Alcohol Fuels-Current Technol. Futur. Prospect, IntechOpen; 2019.

  80. Undavalli V, Gbadamosi Olatunde OB, Boylu R, Wei C, Haeker J, Hamilton J, et al. Recent advancements in sustainable aviation fuels. Prog Aerosp Sci. 2023;136:100876. https://doi.org/10.1016/j.paerosci.2022.100876.

    Article  Google Scholar 

  81. Goldmann A, Sauter W, Oettinger M, Kluge T, Schröder U, Seume JR, et al. A study on electrofuels in aviation. Energies. 2018. https://doi.org/10.3390/en11020392.

    Article  Google Scholar 

  82. Dahal K, Brynolf S, Xisto C, Hansson J, Grahn M, Grönstedt T, et al. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew Sustain Energy Rev. 2021;151:111564. https://doi.org/10.1016/j.rser.2021.111564.

    Article  CAS  Google Scholar 

  83. Rompokos P, Kissoon S, Roumeliotis I, Nalianda D, Nikolaidis T, Rolt A. Liquefied natural gas for civil aviation. Energies. 2020;13:5925.

    Article  CAS  Google Scholar 

  84. Baroutaji A, Wilberforce T, Ramadan M, Olabi AG. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew Sustain Energy Rev. 2019;106:31–40. https://doi.org/10.1016/j.rser.2019.02.022.

    Article  CAS  Google Scholar 

  85. Hoelzen J, Silberhorn D, Zill T, Bensmann B, Hanke-Rauschenbach R. Hydrogen-powered aviation and its reliance on green hydrogen infrastructure—Review and research gaps. Int J Hydrogen Energy. 2022;47:3108–30. https://doi.org/10.1016/j.ijhydene.2021.10.239.

    Article  CAS  Google Scholar 

  86. Rao AG, Yin F, Werij HGC. Energy transition in aviation: the role of cryogenic fuels. Aerosp. 2020. https://doi.org/10.3390/aerospace7120181.

    Article  Google Scholar 

  87. Dolan RH, Anderson JE, Wallington TJ. Outlook for ammonia as a sustainable transportation fuel. Sustain Energy Fuels. 2021;5:4830–41.

    Article  CAS  Google Scholar 

  88. Siddiqui O, Dincer I. A comparative life cycle assessment of clean aviation fuels. Energy. 2021;234: 121126.

    Article  CAS  Google Scholar 

  89. Akbari P, Copeland CD, Tüchler S, Ferris AM, Davidson DF, Hanson RK. Investigation of Ammonia-Hydrogen Mixture as a Green Fuel for Jet Engines Using a Wave Reformer. AIAA SCITECH 2022 Forum, 2022, p. 2048.

  90. Aptsiauri G. Concepts of full-electric and hybrid-electric propulsion and operation risk motivated integrity monitoring for future unmanned cargo aircraft. Autom. Low-Altitude Air Deliv.: Springer; 2022. p. 185–204.

    Google Scholar 

  91. Varyukhin AN, Zakharchenko VS, Vlasov A V, Gordin M V, Ovdienko MA. Roadmap for the technological development of hybrid electric and full-electric propulsion systems of aircrafts. 2019 Int. Conf. Electrotech. Complexes Syst., IEEE; 2019;1–7.

  92. Fornaro E, Cardone M, Dannier A. A comparative assessment of hybrid parallel, series, and full-electric propulsion systems for aircraft application. IEEE Access. 2022;10:28808–20.

    Article  Google Scholar 

  93. Colelli L, Segneri V, Bassano C, Vilardi G. E-fuels, technical and economic analysis of the production of synthetic kerosene precursor as sustainable aviation fuel. Energy Convers Manag. 2023;288:117165. https://doi.org/10.1016/j.enconman.2023.117165.

    Article  CAS  Google Scholar 

  94. Amankwah-Amoah J. Stepping up and stepping out of COVID-19: New challenges for environmental sustainability policies in the global airline industry. J Clean Prod. 2020;271:123000. https://doi.org/10.1016/j.jclepro.2020.123000.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Abrantes I, Ferreira AF, Silva A, Costa M. Sustainable aviation fuels and imminent technologies—CO2 emissions evolution towards 2050. J Clean Prod. 2021;313:127937. https://doi.org/10.1016/j.jclepro.2021.127937.

    Article  CAS  Google Scholar 

  96. ltd R and M. Global Sustainable Aviation Fuel Market by Fuel Type (Biofuel, Hydrogen Fuel, Power to Liquid Fuel, Gas to Liquid), Biofuel Manufacturing Technology (FT-SPK, HEFA-SPK, ATJ-SPK, HFS-SIP, CHJ), Biofuel Blending Capacity, Platform, Region—Forecast to 2030 2022.

  97. Moriarty K, Kvien A. US Airport Infrastructure and Sustainable Aviation Fuel. National Renewable Energy Lab. (NREL), Golden, CO (United States); 2021.

  98. Cabrera E, de Sousa JMM. Use of sustainable fuels in aviation & mdash; a review. Energies. 2022. https://doi.org/10.3390/en15072440.

    Article  Google Scholar 

  99. Boymans E, Nijbacker T, Slort D, Grootjes S, Vreugdenhil B. Jet fuel synthesis from syngas using bifunctional cobalt-based catalysts. Catalysts. 2022;12:288.

    Article  CAS  Google Scholar 

  100. Jaan S. ReFuelEU Aviation initiative: Sustainable aviation fuels and the fit for 55 package 2022.

  101. Sustainable Aviation Fuel Grand Challenge. EnergyGov 2022.

  102. Su-ungkavatin P, Tiruta-Barna L, Hamelin L. Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems. Prog Energy Combust Sci. 2023;96:101073. https://doi.org/10.1016/j.pecs.2023.101073.

    Article  Google Scholar 

  103. Lim JHK, Gan YY, Ong HC, Lau BF, Chen WH, Chong CT, et al. Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective. Renew Sustain Energy Rev. 2021;149:111396. https://doi.org/10.1016/j.rser.2021.111396.

    Article  CAS  Google Scholar 

  104. Madurai Elavarasan R, Pugazhendhi R, Irfan M, Mihet-Popa L, Khan IA, Campana PE. State-of-the-art sustainable approaches for deeper decarbonization in Europe—An endowment to climate neutral vision. Renew Sustain Energy Rev. 2022;159:112204. https://doi.org/10.1016/j.rser.2022.112204.

    Article  CAS  Google Scholar 

  105. Staples MD, Malina R, Suresh P, Hileman JI, Barrett SRH. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy. 2018;114:342–54. https://doi.org/10.1016/j.enpol.2017.12.007.

    Article  CAS  Google Scholar 

  106. Darda S, Papalas T, Zabaniotou A. Biofuels journey in Europe: Currently the way to low carbon economy sustainability is still a challenge. J Clean Prod. 2019;208:575–88. https://doi.org/10.1016/j.jclepro.2018.10.147.

    Article  Google Scholar 

  107. Agusdinata DB, Zhao F, Ileleji K, Delaurentis D. Life cycle assessment of potential biojet fuel production in the United States. Environ Sci Technol. 2011;45:9133–43. https://doi.org/10.1021/es202148g.

    Article  CAS  PubMed  Google Scholar 

  108. Doliente SS, Narayan A, Tapia JF, Samsatli NJ, Zhao Y, Samsatli S. Bio-aviation fuel: a comprehensive review and analysis of the supply chain components. Front Energy Res. 2020;10(8):110.

    Article  Google Scholar 

  109. IATA. World Business Summit on Climate Change. Copenhagen. 2009.

  110. Why ESK, Ong HC, Lee HV, Gan YY, Chen WH, Chong CT. Renewable aviation fuel by advanced hydroprocessing of biomass: Challenges and perspective. Energy Convers Manag. 2019;199:112015. https://doi.org/10.1016/j.enconman.2019.112015.

    Article  CAS  Google Scholar 

  111. Vela-García N, Bolonio D, García-Martínez MJ, Ortega MF, Almeida Streitwieser D, Canoira L. Biojet fuel production from oleaginous crop residues: thermoeconomic, life cycle and flight performance analysis. Energy Convers Manag. 2021;244:114534. https://doi.org/10.1016/j.enconman.2021.114534.

    Article  CAS  Google Scholar 

  112. Ng KS, Farooq D, Yang A. Global biorenewable development strategies for sustainable aviation fuel production. Renew Sustain Energy Rev. 2021. https://doi.org/10.1016/j.rser.2021.111502.

    Article  Google Scholar 

  113. Wang J, Bi P, Zhang Y, Xue H, Jiang P, Wu X, et al. Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk. Energy. 2015;86:488–99. https://doi.org/10.1016/j.energy.2015.04.053.

    Article  CAS  Google Scholar 

  114. Farooq D, Thompson I, Ng KS. Exploring the feasibility of producing sustainable aviation fuel in the UK using hydrothermal liquefaction technology: A comprehensive techno-economic and environmental assessment. Clean Eng Technol. 2020. https://doi.org/10.1016/j.clet.2020.100010.

    Article  Google Scholar 

  115. Perkins G, Batalha N, Kumar A, Bhaskar T, Konarova M. Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renew Sustain Energy Rev. 2019. https://doi.org/10.1016/j.rser.2019.109400.

    Article  Google Scholar 

  116. Davis R, Biddy M, Tan E, Tao L, Jones S. Biological conversion of sugars to hydrocarbons technology pathway. Natl Renew Energy Lab 2013:14.

  117. Olcay H, Malina R, Upadhye AA, Hileman JI, Huber GW, Barrett SRH. Techno-economic and environmental evaluation of producing chemicals and drop-in aviation biofuels via aqueous phase processing. Energy Environ Sci. 2018;11:2085–101. https://doi.org/10.1039/c7ee03557h.

    Article  CAS  Google Scholar 

  118. Wang W-C, Tao L. Bio-jet fuel conversion technologies. Renew Sustain Energy Rev. 2016;53:801–22. https://doi.org/10.1016/j.rser.2015.09.016.

    Article  CAS  Google Scholar 

  119. Emmanouilidou E, Mitkidou S, Agapiou A, Kokkinos NC. Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review. Renew Energy. 2023;206:897–907. https://doi.org/10.1016/j.renene.2023.02.113.

    Article  CAS  Google Scholar 

  120. Guo X, Xia A, Zhang W, Huang Y, Zhu X, Zhu X, et al. Photoenzymatic decarboxylation: A promising way to produce sustainable aviation fuels and fine chemicals. Bioresour Technol. 2023;367:128232. https://doi.org/10.1016/j.biortech.2022.128232.

    Article  CAS  PubMed  Google Scholar 

  121. Mofijur M, Ahmed SF, Rony ZI, Khoo KS, Chowdhury AA, Kalam MA, et al. Screening of non-edible (second-generation) feedstocks for the production of sustainable aviation fuel. Fuel. 2023;331:125879. https://doi.org/10.1016/j.fuel.2022.125879.

    Article  CAS  Google Scholar 

  122. Batten R, Galant O, Karanjikar M, Spatari S. Meeting sustainable aviation fuel policy targets through first generation corn biorefineries. Fuel. 2023;333:126294. https://doi.org/10.1016/j.fuel.2022.126294.

    Article  CAS  Google Scholar 

  123. ICAO ENVRONMENT. Conversion process 2022. https://www.icao.int/environmental-protection/GFAAF/Pages/Conversion-processes.aspx.

  124. Müller-Langer F, Dögnitz N, Marquardt C, Zschocke A, Schripp T, Oehmichen K, et al. Multiblend JET A-1 in practice: results of an R&D project on synthetic paraffinic kerosenes. Chem Eng Technol. 2020;43:1514–21.

    Article  Google Scholar 

  125. Cohen H, Rogers GFC, Saravanamuttoo HIH. Gas turbine theory (pp. 42–60). Engl Pearson Educ Ltd 2009.

  126. Zschocke A, Scheuermann S, Ortner J. High biofuel blends in aviation (HBBA). Interim Report ENER C. 2017;2:420–1.

    Google Scholar 

  127. Johnston G. Alcohol to Jet—Isobutanol. ICAO Semin Altern Fuels 2017.

  128. Marszałek N, Lis T. The future of sustainable aviation fuels. Combust Engines 2022. https://doi.org/10.19206/CE-146696.

  129. Aviation Benefits Beyond Borders. Suatainable aviation fuel 2022. https://aviationbenefits.org/environmental-efficiency/climate-action/sustainable-aviation-fuel/.

  130. ICAO Environment. Airports 2022. https://www.icao.int/environmental-protection/GFAAF/Pages/Airports.aspx.

  131. Lee XJ, Ong HC, Gan YY, Chen WH, Mahlia TMI. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers Manag. 2020. https://doi.org/10.1016/j.enconman.2020.112707.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chen C, Chen F, Cheng Z, Chan QN, Kook S, Yeoh GH. Emissions characteristics of NOx and SO2 in the combustion of microalgae biomass using a tube furnace. J Energy Inst. 2017;90:806–12. https://doi.org/10.1016/j.joei.2016.06.003.

    Article  CAS  Google Scholar 

  133. Mawhood R, Gazis E, de Jong S, Hoefnagels R, Slade R. Production pathways for renewable jet fuel: a review of commercialization status and future prospects. Biofuels Bioprod Biorefining. 2016;10:462–84. https://doi.org/10.1002/bbb.1644.

    Article  CAS  Google Scholar 

  134. Rony ZI, Mofijur M, Hasan MM, Ahmed SF, Almomani F, Rasul MG, et al. Unanswered issues on decarbonizing the aviation industry through the development of sustainable aviation fuel from microalgae. Fuel. 2023;334:126553. https://doi.org/10.1016/j.fuel.2022.126553.

    Article  CAS  Google Scholar 

  135. Alherbawi M, McKay G, Mackey HR, Al-Ansari T. Jatropha curcas for jet biofuel production: Current status and future prospects. Renew Sustain Energy Rev. 2021;135:110396. https://doi.org/10.1016/j.rser.2020.110396.

    Article  CAS  Google Scholar 

  136. Long F, Liu W, Jiang X, Zhai Q, Cao X, Jiang J, et al. State-of-the-art technologies for biofuel production from triglycerides: A review. Renew Sustain Energy Rev. 2021;148:111269. https://doi.org/10.1016/j.rser.2021.111269.

    Article  CAS  Google Scholar 

  137. Alptekin E, Canakci M, Sanli H. Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag. 2014;34:2146–54. https://doi.org/10.1016/j.wasman.2014.07.019.

    Article  CAS  PubMed  Google Scholar 

  138. Mrad N, Varuvel EG, Tazerout M, Aloui F. Effects of biofuel from fish oil industrial residue—Diesel blends in diesel engine. Energy. 2012;44:955–63. https://doi.org/10.1016/j.energy.2012.04.056.

    Article  CAS  Google Scholar 

  139. Li F, Jiang J, Liu P, Zhai Q, Wang F, Hse CY, et al. Catalytic cracking of triglycerides with a base catalyst and modification of pyrolytic oils for production of aviation fuels. Sustain Energy Fuels. 2018;2:1206–15. https://doi.org/10.1039/c7se00505a.

    Article  CAS  Google Scholar 

  140. Xu J, Long F, Jiang J, Li F, Zhai Q, Wang F, et al. Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels. J Clean Prod. 2019;222:784–92. https://doi.org/10.1016/j.jclepro.2019.03.094.

    Article  CAS  Google Scholar 

  141. Çakırca EE, Tekin NG, İlgen O, Kın NA. Catalytic activity of CaO-based catalyst in transesterification of microalgae oil with methanol. Energy Environ. 2019;30:176–87. https://doi.org/10.1177/0958305X18787317.

    Article  Google Scholar 

  142. Chen N, Gong S, Shirai H, Watanabe T, Qian EW. Effects of Si/Al ratio and Pt loading on Pt/SAPO-11 catalysts in hydroconversion of Jatropha oil. Appl Catal A Gen. 2013;466:105–15. https://doi.org/10.1016/j.apcata.2013.06.034.

    Article  CAS  Google Scholar 

  143. Ali A, Li B, Lu Y, Zhao C. Highly selective and low-temperature hydrothermal conversion of natural oils to fatty alcohols. Green Chem. 2019;21(11):3059–64.

    Article  CAS  Google Scholar 

  144. Liu Y, Sotelo-Boyás R, Murata K, Minowa T, Sakanishi K. Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids. Energy Fuels. 2011;25:4675–85. https://doi.org/10.1021/ef200889e.

    Article  CAS  Google Scholar 

  145. AlSharifi M, Znad H. Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst. Renew Energy. 2020;151:740–9. https://doi.org/10.1016/j.renene.2019.11.071.

    Article  CAS  Google Scholar 

  146. Yenumala SR, Maity SK, Shee D. Hydrodeoxygenation of karanja oil over supported nickel catalysts: Influence of support and nickel loading. Catal Sci Technol. 2016;6:3156–65. https://doi.org/10.1039/c5cy01470k.

    Article  CAS  Google Scholar 

  147. Baral NR, Yang M, Harvey BG, Simmons BA, Mukhopadhyay A, Lee TS, et al. Production cost and carbon footprint of biomass-derived dimethylcyclooctane as a high-performance jet fuel blendstock. ACS Sustain Chem Eng. 2021;9:11872–82. https://doi.org/10.1021/acssuschemeng.1c03772.

    Article  CAS  Google Scholar 

  148. Carpenter M, Ugbeh-Johnson J. The impact of sustainable aviation fuels on aircraft fuel line i ce formation and pump performance. Aeronaut J. 2023;127:1287–307. https://doi.org/10.1017/aer.2023.6.

    Article  Google Scholar 

  149. Lu T, Law CK. Toward accommodating realistic fuel chemistry in large-scale computations. Prog Energy Combust Sci. 2009;35:192–215. https://doi.org/10.1016/j.pecs.2008.10.002.

    Article  CAS  Google Scholar 

  150. Seidel L, Moshammer K, Wang X, Zeuch T, Kohse-Höinghaus K, Mauss F. Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame. Combust Flame. 2015;162:2045–58. https://doi.org/10.1016/j.combustflame.2015.01.002.

    Article  CAS  Google Scholar 

  151. Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust Flame. 2009;156:181–99. https://doi.org/10.1016/j.combustflame.2008.07.014.

    Article  CAS  Google Scholar 

  152. Wang YL, Lee DJ, Westbrook CK, Egolfopoulos FN, Tsotsis TT. Oxidation of small alkyl esters in flames. Combust Flame. 2014;161:810–7. https://doi.org/10.1016/j.combustflame.2013.09.013.

    Article  CAS  Google Scholar 

  153. Cancino LR, Fikri M, Oliveira AAM, Schulz C. Autoignition of gasoline surrogate mixtures at intermediate temperatures and high pressures experimental and numerical approaches. Proc Combust Inst. 2009. https://doi.org/10.1016/j.proci.2008.06.1804.

    Article  Google Scholar 

  154. Andrae JCG. Development of a detailed kinetic model for gasoline surrogate fuels. Fuel. 2008;87:2013–22. https://doi.org/10.1016/j.fuel.2007.09.010.

    Article  CAS  Google Scholar 

  155. Dunphy MP, Patterson PM, Simmie JM. High-temperature Oxidation. J Chem Soc. 1991;87:2549–59.

    CAS  Google Scholar 

  156. Alzueta MU, Borruey M, Callejas A, Millera A, Bilbao R. An experimental and modeling study of the oxidation of acetylene in a flow reactor. Combust Flame. 2008;152:377–86. https://doi.org/10.1016/j.combustflame.2007.10.011.

    Article  CAS  Google Scholar 

  157. Marinov NM. Kinetic model for high temperature ethanol oxidation. Int J Chem Kinet. 1999;31:183–220.

    Article  CAS  Google Scholar 

  158. Cancino LR, Fikri M, Oliveira AAM, Schulz C. Measurement and chemical kinetics modeling of shock-induced ignition of ethanol-air mixtures. Energy Fuels. 2010;24:2830–40. https://doi.org/10.1021/ef100076w.

    Article  CAS  Google Scholar 

  159. Leplat N, Dagaut P, Togbé C, Vandooren J. Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combust Flame. 2011;158:705–25. https://doi.org/10.1016/j.combustflame.2010.12.008.

    Article  CAS  Google Scholar 

  160. Johnson MV, Goldsborough SS, Serinyel Z, O’Toole P, Larkin E, O’Malley G, et al. A shock tube study of n- and iso-propanol ignition. Energy Fuels. 2009;23:5886–98. https://doi.org/10.1021/ef900726j.

    Article  CAS  Google Scholar 

  161. Frassoldati A, Cuoci A, Faravelli T, Niemann U, Ranzi E, Seiser R, et al. An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combust Flame. 2010;157:2–16. https://doi.org/10.1016/j.combustflame.2009.09.002.

    Article  CAS  Google Scholar 

  162. Glaude PA, Pitz WJ, Thomson MJ. Chemical kinetic modeling of dimethyl carbonate in an opposed-flow diffusion flame. Proc Combust Inst. 2005;30:1111–8. https://doi.org/10.1016/j.proci.2004.08.096.

    Article  CAS  Google Scholar 

  163. Gail S, Thomson MJ, Sarathy SM, Syed SA, Dagaut P, Diévart P, et al. A wide-ranging kinetic modeling study of methyl butanoate combustion. Proc Combust Inst. 2007;31:305–11. https://doi.org/10.1016/j.proci.2006.08.051.

    Article  CAS  Google Scholar 

  164. Perosa A, Selva M, Lucchini V, Fabris M, Noè M. Kinetic parameter estimation of solvent-free reactions monitored by 13C NMR spectroscopy, a case study: Mono- and di-(hydroxy)ethylation of aniline with ethylene carbonate. Int J Chem Kinet. 2011;43:154–60. https://doi.org/10.1002/kin.

    Article  Google Scholar 

  165. Burke U, Somers KP, O’Toole P, Zinner CM, Marquet N, Bourque G, et al. An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures. Combust Flame. 2015;162:315–30. https://doi.org/10.1016/j.combustflame.2014.08.014.

    Article  CAS  Google Scholar 

  166. Dayma G, Gaïl S, Dagaut P. Experimental and kinetic modeling study of the oxidation of methyl hexanoate. Energy Fuels. 2008;22:1469–79. https://doi.org/10.1021/ef700695j.

    Article  CAS  Google Scholar 

  167. Gaïl S, Sarathy SM, Thomson MJ, Diévart P, Dagaut P. Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate. Combust Flame. 2008;155:635–50. https://doi.org/10.1016/j.combustflame.2008.04.007.

    Article  CAS  Google Scholar 

  168. Herbinet O, Pitz WJ, Westbrook CK. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame. 2008;154:507–28. https://doi.org/10.1016/j.combustflame.2008.03.003.

    Article  CAS  Google Scholar 

  169. Dayma G, Togbé C, Dagaut P. Detailed kinetic mechanism for the oxidation of vegetable oil methyl esters: New evidence from methyl heptanoate. Energy Fuels. 2009;23:4254–68. https://doi.org/10.1021/ef900184y.

    Article  CAS  Google Scholar 

  170. Glaude PA, Herbinet O, Bax S, Biet J, Warth V, Battin-Leclerc F. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor. Combust Flame. 2010;157:2035–50. https://doi.org/10.1016/j.combustflame.2010.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Herbinet O, Pitz WJ, Westbrook CK. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combust Flame. 2010;157:893–908. https://doi.org/10.1016/j.combustflame.2009.10.013.

    Article  CAS  Google Scholar 

  172. Herbinet O, Biet J, Hakka MH, Warth V, Glaude PA, Nicolle A, et al. Modeling study of the low-temperature oxidation of large methyl esters from C11 to C19. Proc Combust Inst. 2011;33:391–8. https://doi.org/10.1016/j.proci.2010.07.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Naik CV, Westbrook CK, Herbinet O, Pitz WJ, Mehl M. Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl oleate. Proc Combust Inst. 2011;33:383–9. https://doi.org/10.1016/j.proci.2010.05.007.

    Article  CAS  Google Scholar 

  174. Harper MR, Van Geem KM, Pyl SP, Marin GB, Green WH. Comprehensive reaction mechanism for n-butanol pyrolysis and combustion. Combust Flame. 2011;158:16–41. https://doi.org/10.1016/j.combustflame.2010.06.002.

    Article  CAS  Google Scholar 

  175. Black G, Curran HJ, Pichon S, Simmie JM, Zhukov V. Bio-butanol: Combustion properties and detailed chemical kinetic model. Combust Flame. 2010;157:363–73. https://doi.org/10.1016/j.combustflame.2009.07.007.

    Article  CAS  Google Scholar 

  176. Cai J, Zhang L, Zhang F, Wang Z, Cheng Z, Yuan W, et al. Experimental and kinetic modeling study of n-butanol pyrolysis and combustion. Energy Fuels. 2012;26:5550–68. https://doi.org/10.1021/ef3011965.

    Article  CAS  Google Scholar 

  177. Dagaut P, Sarathy SM, Thomson MJ. A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. Proc Combust Inst. 2009;32:229–37. https://doi.org/10.1016/j.proci.2008.05.005.

    Article  CAS  Google Scholar 

  178. Grana R, Frassoldati A, Faravelli T, Niemann U, Ranzi E, Seiser R, et al. An experimental and kinetic modeling study of combustion of isomers of butanol. Combust Flame. 2010;157:2137–54. https://doi.org/10.1016/j.combustflame.2010.05.009.

    Article  CAS  Google Scholar 

  179. Moss JT, Berkowitz AM, Oehlschlaeger MA, Biet J, Warth V, Glaude PA, et al. An experimental and kinetic modeling study of the oxidation of the four isomers of butanol. J Phys Chem A. 2008;112:10843–55. https://doi.org/10.1021/jp806464p.

    Article  CAS  PubMed  Google Scholar 

  180. Kahandawala MSP, DeWitt MJ, Corporan E, Sidhu SS. Ignition and emission characteristics of surrogate and practical jet fuels. Energy Fuels. 2008;22:3673–9. https://doi.org/10.1021/ef800303a.

    Article  CAS  Google Scholar 

  181. Kumar K, Sung CJ. A comparative experimental study of the autoignition characteristics of alternative and conventional jet fuel/oxidizer mixtures. Fuel. 2010;89:2853–63. https://doi.org/10.1016/j.fuel.2010.05.021.

    Article  CAS  Google Scholar 

  182. Gokulakrishnan P, Klassen MS, Roby RJ. Ignition characteristics of a fischer-tropsch synthetic jet fuel. Proc ASME Turbo Expo. 2008;3:921–9. https://doi.org/10.1115/GT2008-51211.

    Article  Google Scholar 

  183. Wang H, Oehlschlaeger MA. Autoignition studies of conventional and Fischer-Tropsch jet fuels. Fuel. 2012;98:249–58. https://doi.org/10.1016/j.fuel.2012.03.041.

    Article  CAS  Google Scholar 

  184. Allen C, Toulson E, Edwards T, Lee T. Application of a novel charge preparation approach to testing the autoignition characteristics of JP-8 and camelina hydroprocessed renewable jet fuel in a rapid compression machine. Combust Flame. 2012;159:2780–8. https://doi.org/10.1016/j.combustflame.2012.03.019.

    Article  CAS  Google Scholar 

  185. Han HS, Kim CJ, Cho CH, Sohn CH, Han J. Ignition delay time and sooting propensity of a kerosene aviation jet fuel and its derivative blended with a bio-jet fuel. Fuel. 2018;232:724–8. https://doi.org/10.1016/j.fuel.2018.06.032.

    Article  CAS  Google Scholar 

  186. Won SH, Dooley S, Veloo PS, Wang H, Oehlschlaeger MA, Dryer FL, et al. The combustion properties of 2,6,10-trimethyl dodecane and a chemical functional group analysis. Combust Flame. 2014;161:826–34. https://doi.org/10.1016/j.combustflame.2013.08.010.

    Article  CAS  Google Scholar 

  187. Min K, Valco D, Oldani A, Lee T. IMECE2015–51713 2018;2.

  188. Flora G, Balagurunathan J, Saxena S, Cain JP, Kahandawala MSP, DeWitt MJ, et al. Chemical ignition delay of candidate drop-in replacement jet fuels under fuel-lean conditions: A shock tube study. Fuel. 2017;209:457–72. https://doi.org/10.1016/j.fuel.2017.07.082.

    Article  CAS  Google Scholar 

  189. Zhu Y, Li S, Davidson DF, Hanson RK. Ignition delay times of conventional and alternative fuels behind reflected shock waves. Proc Combust Inst. 2015;35:241–8. https://doi.org/10.1016/j.proci.2014.05.034.

    Article  CAS  Google Scholar 

  190. Kumar K, Sung CJ, Hui X. Laminar flame speeds and extinction limits of conventional and alternative jet fuels. Fuel. 2011;90:1004–11. https://doi.org/10.1016/j.fuel.2010.11.022.

    Article  CAS  Google Scholar 

  191. Hui X, Sung CJ. Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures. Fuel. 2013;109:191–200. https://doi.org/10.1016/j.fuel.2012.12.084.

    Article  CAS  Google Scholar 

  192. Mzé-Ahmed A, Dagaut P, Hadj-Ali K, Dayma G, Kick T, Herbst J, et al. Oxidation of a coal-to-liquid synthetic jet fuel: Experimental and chemical kinetic modeling study. Energy Fuels. 2012;26:6070–9. https://doi.org/10.1021/ef3009585.

    Article  CAS  Google Scholar 

  193. Wang Z, Bai Z, Yelishala SC, Yu G, Metghalchi H. Effects of diluent on laminar burning speed and flame structure of gas to liquid fuel air mixtures at high temperatures and moderate pressures. Fuel. 2018;231:204–14. https://doi.org/10.1016/j.fuel.2018.05.069.

    Article  CAS  Google Scholar 

  194. Hwang BJ, Kang S, Lee HJ, Min S. Measurement of laminar burning velocity of high performance alternative aviation fuels. Fuel. 2020;261: 116466. https://doi.org/10.1016/j.fuel.2019.116466.

    Article  CAS  Google Scholar 

  195. Munzar JD, Zia A, Versailles P, Jim R, Bergthorson JM, Akih-kumgeh B. GT2014–25951 2016:1–12.

  196. Kick T, Herbst J, Kathrotia T, Marquetand J, Braun-Unkhoff M, Naumann C, et al. An experimental and modeling study of burning velocities of possible future synthetic jet fuels. Energy. 2012;43:111–23. https://doi.org/10.1016/j.energy.2012.01.035.

    Article  CAS  Google Scholar 

  197. Hui X, Kumar K, Sung CJ, Edwards T, Gardner D. Experimental studies on the combustion characteristics of alternative jet fuels. Fuel. 2012;98:176–82. https://doi.org/10.1016/j.fuel.2012.03.040.

    Article  CAS  Google Scholar 

  198. Ji C, Wang YL, Egolfopoulos FN. Flame studies of conventional and alternative jet fuels. J Propuls Power. 2011;27:856–63. https://doi.org/10.2514/1.B34105.

    Article  CAS  Google Scholar 

  199. Xue X, Hui X, Singh P, Sung CJ. Soot formation in non-premixed counterflow flames of conventional and alternative jet fuels. Fuel. 2017;210:343–51. https://doi.org/10.1016/j.fuel.2017.08.079.

    Article  CAS  Google Scholar 

  200. Kang D, Kim D, Kalaskar V, Violi A, Boehman AL. Experimental characterization of jet fuels under engine relevant conditions—Part 1: Effect of chemical composition on autoignition of conventional and alternative jet fuels. Fuel. 2019;239:1388–404. https://doi.org/10.1016/j.fuel.2018.10.005.

    Article  CAS  Google Scholar 

  201. Won SH, Veloo PS, Dooley S, Santner J, Haas FM, Ju Y, et al. Predicting the global combustion behaviors of petroleum-derived and alternative jet fuels by simple fuel property measurements. Fuel. 2016;168:34–46. https://doi.org/10.1016/j.fuel.2015.11.026.

    Article  CAS  Google Scholar 

  202. Seber G, Malina R, Pearlson MN, Olcay H, Hileman JI, Barrett SRH. Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass Bioenerg. 2014;67:108–18. https://doi.org/10.1016/j.biombioe.2014.04.024.

    Article  CAS  Google Scholar 

  203. Robota HJ, Alger JC, Shafer L. Converting algal triglycerides to diesel and HEFA jet fuel fractions. Energy Fuels. 2013;27:985–96. https://doi.org/10.1021/ef301977b.

    Article  CAS  Google Scholar 

  204. Macaskie LE, Redwood MD. (12) Patent application publication (10) Pub. No.: US 2008 / 0225123 A1 patent application publication. Priv Point Contain Sm Card. 2008;1:11–4.

    Google Scholar 

  205. Li L, Coppola E, Rine J, Miller JL, Walker D. Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuels. 2010;24:1305–15. https://doi.org/10.1021/ef901163a.

    Article  CAS  Google Scholar 

  206. Luning Prak DJ, Jones MH, Trulove P, McDaniel AM, Dickerson T, Cowart JS. Physical and chemical analysis of alcohol-to-jet (ATJ) fuel and development of surrogate fuel mixtures. Energy Fuels. 2015;29:3760–9. https://doi.org/10.1021/acs.energyfuels.5b00668.

    Article  CAS  Google Scholar 

  207. Geleynse S, Jiang Z, Brandt K, Garcia-Perez M, Wolcott M, Zhang X. Pulp mill integration with alcohol-to-jet conversion technology. Fuel Process Technol. 2020;201: 106338. https://doi.org/10.1016/j.fuproc.2020.106338.

    Article  CAS  Google Scholar 

  208. Dry ME. Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal A Gen. 1996;138:319–44. https://doi.org/10.1016/0926-860X(95)00306-1.

    Article  CAS  Google Scholar 

  209. Bressanin JM, Geraldo VC, Gomes FD, Klein BC, Chagas MF, Watanabe MD, Bonomi A, de Morais ER, Cavalett O. Multiobjective optimization of economic and environmental performance of Fischer-Tropsch biofuels production integrated to sugarcane biorefineries. Ind Crops Products. 2021;15(170):113810. https://doi.org/10.1016/j.indcrop.2021.113810.

    Article  CAS  Google Scholar 

  210. Montoya Sánchez N, Link F, Chauhan G, Halmenschlager C, El-Sayed HEM, Sehdev R, et al. Conversion of waste to sustainable aviation fuel via Fischer-Tropsch synthesis: Front-end design decisions. Energy Sci Eng. 2022;10:1763–89. https://doi.org/10.1002/ese3.1072.

    Article  CAS  Google Scholar 

  211. Huang WD, Percival Zhang YH. Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation. Energy Environ Sci. 2011;4:784–92. https://doi.org/10.1039/c0ee00069h.

    Article  CAS  Google Scholar 

  212. Hamilton L, Luning-Prak D, Cowart J, McDaniel A, Williams S, Leung R. Direct sugar to hydrocarbon (DSH) fuel performance evaluation in multiple diesel engines. SAE Int J Fuels Lubr. 2014;7:270–82. https://doi.org/10.4271/2014-01-1472.

    Article  CAS  Google Scholar 

  213. Michailos S. Process design, economic evaluation and life cycle assessment of jet fuel production from sugar cane residue. Environ Prog Sustain Energy. 2018;37:1227–35. https://doi.org/10.1002/ep.12840.

    Article  CAS  Google Scholar 

  214. IEA. Fossil jet and biojet fuel production cost ranges, 2010–2030 2024. https://www.iea.org/data-and-statistics/charts/fossil-jet-and-biojet-fuel-production-cost-ranges-2010-2030.

  215. Diederichs GW, Ali Mandegari M, Farzad S, Görgens JF. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresour Technol. 2016;216:331–9. https://doi.org/10.1016/j.biortech.2016.05.090.

    Article  CAS  PubMed  Google Scholar 

  216. Martinez-Hernandez E, Ramírez-Verduzco LF, Amezcua-Allieri MA, Aburto J. Process simulation and techno-economic analysis of bio-jet fuel and green diesel production — Minimum selling prices. Chem Eng Res Des. 2019;146:60–70. https://doi.org/10.1016/j.cherd.2019.03.042.

    Article  CAS  Google Scholar 

  217. Ranganathan P, Savithri S. Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing. Bioresour Technol. 2019;284:256–65. https://doi.org/10.1016/j.biortech.2019.03.087.

    Article  CAS  PubMed  Google Scholar 

  218. Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH. Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences. Biofuels, Bioprod Biorefining. 2012;6:246–56. https://doi.org/10.1002/bbb.

    Article  CAS  Google Scholar 

  219. Liu H, Zhang C, Tian H, Li L, Wang X, Qiu T. Environmental and techno-economic analyses of bio-jet fuel produced from jatropha and castor oilseeds in China. Int J Life Cycle Assess. 2021;26:1071–84. https://doi.org/10.1007/s11367-021-01914-0.

    Article  CAS  Google Scholar 

  220. Tao L, Milbrandt A, Zhang Y, Wang WC. Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnol Biofuels. 2017;10:1–16. https://doi.org/10.1186/s13068-017-0945-3.

    Article  CAS  Google Scholar 

  221. Real Guimarães H, Marcon Bressanin J, Lopes Motta I, Ferreira Chagas M, Colling Klein B, Bonomi A, et al. Decentralization of sustainable aviation fuel production in Brazil through Biomass-to-Liquids routes: A techno-economic and environmental evaluation. Energy Convers Manag. 2023;276:116547. https://doi.org/10.1016/j.enconman.2022.116547.

    Article  CAS  Google Scholar 

  222. Standardization IO for. Environmental management: life cycle assessment; Principles and Framework. ISO; 2006.

  223. Mu D, Xin C, Zhou W. Life cycle assessment and techno-economic analysis of algal biofuel production. Microalgae Cultiv Biofuels Product. 2020;1:281–92.

    Article  Google Scholar 

  224. De Jong S, Antonissen K, Hoefnagels R, Lonza L, Wang M, Faaij A, et al. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol Biofuels. 2017. https://doi.org/10.1186/s13068-017-0739-7.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Bhatt AH, Zhang Y, Milbrandt A, Newes E, Moriarty K, Klein B, et al. Evaluation of performance variables to accelerate the deployment of sustainable aviation fuels at a regional scale. Energy Convers Manag. 2023;275:116441. https://doi.org/10.1016/j.enconman.2022.116441.

    Article  CAS  Google Scholar 

  226. de Jong S, Hoefnagels R, Faaij A, Slade R, Mawhood R, Junginger M. The feasibility of short-term production strategies for renewable jet fuels—a comprehensive techno-economic comparison. Biofuels Bioprod Biorefining. 2015;9:778–800. https://doi.org/10.1002/bbb.1613.

    Article  CAS  Google Scholar 

  227. Prussi M, O’connell A, Lonza L. Analysis of current aviation biofuel technical production potential in EU28. Biomass Bioenerg. 2019;130: 105371.

    Article  CAS  Google Scholar 

  228. EASA, EEA, Eurocontrol. European Aviation Environmental Report 2019. Publ Eur Environ Agency, Eur Aviat Saf Agency Eur Organ Saf Air Navig Https//Ec Eur Eu/Transport/Sites/Transport/Files/European-Aviation-Environmental-Report-2016–72dpi Pdf 2016;7:2019.

  229. Wei H, Liu W, Chen X, Yang Q, Li J, Chen H. Renewable bio-jet fuel production for aviation: A review. Fuel. 2019. https://doi.org/10.1016/j.fuel.2019.06.007.

    Article  Google Scholar 

  230. Mupondwa E, Li X, Tabil L, Falk K, Gugel R. Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian Prairies. Biomass Bioenerg. 2016;95:221–34. https://doi.org/10.1016/j.biombioe.2016.10.014.

    Article  CAS  Google Scholar 

  231. Neuling U, Kaltschmitt M. Techno-economic and environmental analysis of aviation biofuels. Fuel Process Technol. 2018;171:54–69.

    Article  CAS  Google Scholar 

  232. Staples MD, Malina R, Olcay H, Pearlson MN, Hileman JI, Boies A, et al. Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies. Energy Environ Sci. 2014;7:1545–54.

    Article  CAS  Google Scholar 

  233. Atsonios K, Kougioumtzis MA, Panopoulos KD, Kakaras E. Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison. Appl Energy. 2015;138:346–66. https://doi.org/10.1016/j.apenergy.2014.10.056.

    Article  CAS  Google Scholar 

  234. Tzanetis KF, Posada JA, Ramirez A. Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance. Renew Energy. 2017;113:1388–98. https://doi.org/10.1016/j.renene.2017.06.104.

    Article  CAS  Google Scholar 

  235. Nakamura H, Kajikawa Y, Suzuki S. Multi-level perspectives with technology readiness measures for aviation innovation. Sustain Sci. 2013;8:87–101.

    Article  Google Scholar 

  236. Prussi M, Lee U, Wang M, Malina R, Valin H, Taheripour F, et al. CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renew Sustain Energy Rev. 2021;150:111398. https://doi.org/10.1016/j.rser.2021.111398.

    Article  CAS  Google Scholar 

  237. Cox K, Renouf M, Dargan A, Turner C, Klein-Marcuschamer D. Environmental life cycle assessment (LCA) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses. Biofuels Bioprod Biorefining. 2014;8:579–93. https://doi.org/10.1002/bbb.1488.

    Article  CAS  Google Scholar 

  238. Fortier MOP, Roberts GW, Stagg-Williams SM, Sturm BSM. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae. Appl Energy. 2014;122:73–82. https://doi.org/10.1016/j.apenergy.2014.01.077.

    Article  CAS  Google Scholar 

  239. Duan H, Dong J, Gu X, Peng YK, Chen W, Issariyakul T, et al. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-00596-3.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Budsberg E, Crawford JT, Morgan H, Chin WS, Bura R, Gustafson R. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: Life cycle assessment. Biotechnol Biofuels. 2016. https://doi.org/10.1186/s13068-016-0582-2.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Mousavi-Avval SH, Shah A. Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed. Renew Sustain Energy Rev. 2021. https://doi.org/10.1016/j.rser.2021.111340.

    Article  Google Scholar 

  242. Michaga MFR, Michailos S, Hughes KJ, Ingham D, Pourkashanian M. 10—Techno-economic and life cycle assessment review of sustainable aviation fuel produced via biomass gasification In: Ray RCBT-SB, editor. Appl Biotechnol Rev. 2021. https://doi.org/10.1016/B978-0-12-820297-5.00012-8.

    Article  Google Scholar 

  243. Stratton RW, Wong HM, Hileman JI. Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. Environ Sci Technol. 2011;45:4637–44. https://doi.org/10.1021/es102597f.

    Article  CAS  PubMed  Google Scholar 

  244. Bailis RE, Baka JE. Greenhouse gas emissions and land use change from Jatropha curcas -based jet fuel in brazil. Environ Sci Technol. 2010;44:8684–91. https://doi.org/10.1021/es1019178.

    Article  CAS  PubMed  Google Scholar 

  245. Barbera E, Naurzaliyev R, Asiedu A, Bertucco A, Resurreccion EP, Kumar S. Techno-economic analysis and life-cycle assessment of jet fuels production from waste cooking oil via in situ catalytic transfer hydrogenation. Renew Energy. 2020;160:428–49. https://doi.org/10.1016/j.renene.2020.06.077.

    Article  CAS  Google Scholar 

  246. Vela-García N, Bolonio D, Mosquera AM, Ortega MF, García-Martínez MJ, Canoira L. Techno-economic and life cycle assessment of triisobutane production and its suitability as biojet fuel. Appl Energy. 2020;268:114897. https://doi.org/10.1016/j.apenergy.2020.114897.

    Article  CAS  Google Scholar 

  247. Chen PH, Quinn JC. Microalgae to biofuels through hydrothermal liquefaction: Open-source techno-economic analysis and life cycle assessment. Appl Energy. 2021;289:116613. https://doi.org/10.1016/j.apenergy.2021.116613.

    Article  CAS  Google Scholar 

  248. Cruce JR, Beattie A, Chen P, Quiroz D, Somers M, Compton S, et al. Driving toward sustainable algal fuels: A harmonization of techno-economic and life cycle assessments. Algal Res. 2021;54:102169. https://doi.org/10.1016/j.algal.2020.102169.

    Article  Google Scholar 

  249. Connelly EB, Colosi LM, Clarens AF, Lambert JH. Life cycle assessment of biofuels from algae hydrothermal liquefaction: the upstream and downstream factors affecting regulatory compliance. Energy Fuels. 2015;29:1653–61. https://doi.org/10.1021/ef502100f.

    Article  CAS  Google Scholar 

  250. Rajesh Banu J, Preethi KS, Gunasekaran M, Kumar G. Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol. 2020;302:122822. https://doi.org/10.1016/j.biortech.2020.122822.

    Article  CAS  PubMed  Google Scholar 

  251. Ubando AT, Rivera DRT, Chen WH, Culaba AB. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresour Technol. 2019. https://doi.org/10.1016/j.biortech.2019.121837.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the support from the Department of Aerospace Engineering and Interdisciplinary Research Center for Aviation and Space Exploration, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naef A. A. Qasem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasem, N.A.A., Mourad, A., Abderrahmane, A. et al. A recent review of aviation fuels and sustainable aviation fuels. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13027-5

Keywords

Navigation