Skip to main content
Log in

Polyethylene glycol infiltrated biomass-derived porous carbon phase change composites for efficient thermal energy storage

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the sharp increase in modern energy consumption, phase change composites with the characteristics of rapid preparation are employed for thermal energy storage to meet the challenge of energy crisis. In this study, a NaCl-assisted carbonization process was used to construct porous Pleurotus eryngii carbon with ultra-low volume shrinkage rate of 2%, which provides enormous space for encapsulation of PEG-4000. Such composite possesses exceptional thermal stability, with an absorption rate of 88.24%, a melting enthalpy of 174.87 J/g, and a relative enthalpy efficiency of 97.78%. Consequently, the resultant composites exhibit outstanding performances in storing and releasing thermal energy for photo-thermal, electric-thermal, and magnetic-thermal conversion. This study presents a highly valuable strategy into the quick fabrication of phase change composites, facilitating their practical applications in thermal energy storage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper, its supplementary information files.

References

  1. Liu S, Quan B, Sheng M et al (2023) A novel in-situ growth ZIF-67 on biological porous carbon encapsulated phase change composites with electromagnetic interference shielding and multifunctional energy conversion. Nano Energy 114:108669. https://doi.org/10.1016/j.nanoen.2023.108669

    Article  CAS  Google Scholar 

  2. Wang G, Tang Z, Gao Y et al (2023) Phase change thermal storage materials for interdisciplinary applications. Chem Rev 123:6953–7024. https://doi.org/10.1021/acs.chemrev.2c00572

    Article  CAS  PubMed  Google Scholar 

  3. Yuan G, Wan T, Baqais A et al (2023) Boron and fluorine co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

    Article  CAS  Google Scholar 

  4. Lin Z, Li X, Zhang H et al (2023) Research progress of mxenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392. https://doi.org/10.1039/D3QI00819C

    Article  CAS  Google Scholar 

  5. Jiang X, Chen Y, Meng X et al (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  6. Zhang W, Zhao S, Wang R et al (2023) Proton-conductive channels engineering of perfluorosulfonic acid membrane via in situ acid–base pair of metal organic framework for fuel cells. Adv Compos Hybrid Mater 6:60. https://doi.org/10.1007/s42114-023-00637-0

    Article  CAS  Google Scholar 

  7. Li X, Zhang P, Li S et al (2023) Mixed perovskites (2D/3D)-based solar cells: a review on crystallization and surface modification for enhanced efficiency and stability. Adv Compos Hybrid Mater 6:111. https://doi.org/10.1007/s42114-023-00691-8

    Article  CAS  Google Scholar 

  8. Zhu C, Lu X, Wu H et al (2022) Constructing heat conduction path and flexible support skeleton for PEG-based phase change composites through salt template method. Compos Sci Technol 226:109532. https://doi.org/10.1016/j.compscitech.2022.109532

    Article  CAS  Google Scholar 

  9. Cao Y, Li W, Huang D et al (2022) One-step construction of novel phase change composites supported by a biomass/MXene gel network for efficient thermal energy storage. Sol Energy Mater Sol Cells 241:111729. https://doi.org/10.1016/j.solmat.2022.111729

    Article  CAS  Google Scholar 

  10. Shen J, Ma Y, Zhou F et al (2024) Thermophysical properties investigation of phase change microcapsules with low supercooling and high energy storage capability: potential for efficient solar energy thermal management. J Mater Sci Technol 191:199–208. https://doi.org/10.1016/j.jmst.2024.01.014

    Article  Google Scholar 

  11. Li Z, Hu N, Fan L (2023) Nanocomposite phase change materials for high-performance thermal energy storage: a critical review. Energy Storage Mater 55:727–753. https://doi.org/10.1016/j.ensm.2022.12.037

    Article  CAS  Google Scholar 

  12. Guo H, Jiao W, Jin H et al (2023) Microsphere structure composite phase change material with anti-leakage, self-sensing, and photothermal conversion properties for thermal energy harvesting and multi-functional sensor. Adv Funct Mater 33:2209345. https://doi.org/10.1002/adfm.202209345

    Article  CAS  Google Scholar 

  13. Subramanian M, Hoang AT, Kalidasan B et al (2021) A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles. J Clean Prod 322:129079. https://doi.org/10.1016/j.jclepro.2021.129079

    Article  CAS  Google Scholar 

  14. Cao Y, Lian P, Chen Y et al (2024) Novel organically modified disodium hydrogen phosphate dodecahydrate-based phase change composite for efficient solar energy storage and conversion. Sol Energy Mater Sol Cells 268:112747. https://doi.org/10.1016/j.solmat.2024.112747

    Article  CAS  Google Scholar 

  15. Su W, Darkwa J, Kokogiannakis G (2015) Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev 48:373–391. https://doi.org/10.1016/j.rser.2015.04.044

    Article  CAS  Google Scholar 

  16. Lian P, Yan R, Wu Z et al (2023) Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv Compos Hybrid Mater 6:74. https://doi.org/10.1007/s42114-023-00655-y

    Article  CAS  Google Scholar 

  17. Erfani Farsi Eidgah E, Ghafurian MM, Tavakoli A et al (2023) Correction: Solar-thermal conversion and thermal energy storage of different phase change materials. J Therm Anal Calorim 149:519. https://doi.org/10.1007/s10973-023-12616-0

    Article  CAS  Google Scholar 

  18. Liu Y, Liu G, Wu Y et al (2023) High-temperature, reversible, and robust thermochromic fluorescence based on Rb2MnBr 4(H2O)2 for anti-counterfeiting. Adv Mater 35:2301914. https://doi.org/10.1002/adma.202301914

    Article  CAS  Google Scholar 

  19. Xu J, Chao J, Li T et al (2020) Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air. ACS Central Sci 6:1542–1554. https://doi.org/10.1021/acscentsci.0c00570

    Article  CAS  Google Scholar 

  20. Guo B, Hoshino Y, Gao F et al (2020) Thermocells driven by phase transition of hydrogel nanoparticles. J Am Chem Soc 142:17318–17322. https://doi.org/10.1021/jacs.0c08600

    Article  CAS  PubMed  Google Scholar 

  21. Liu H, Zhou F, Shi X et al (2023) A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett 15:29. https://doi.org/10.1007/s40820-022-00991-6

    Article  CAS  Google Scholar 

  22. Li X, Sheng X, Fang Y et al (2023) Wearable janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv Funct Mater 33:18. https://doi.org/10.1002/adfm.202212776

    Article  CAS  Google Scholar 

  23. Ding Y, Lu X, Liu S et al (2022) Sandwich-structured multifunctional composite films with excellent electromagnetic interference shielding and light/electro/magnetic-to-thermal conversion and storage capabilities. Compos Part A-Appl S 163:107178. https://doi.org/10.1016/j.compositesa.2022.107178

    Article  CAS  Google Scholar 

  24. Nižetić S, Jurčević M, Čoko D et al (2021) Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: comprehensive analysis of design approaches. Energy 228:120546. https://doi.org/10.1016/j.energy.2021.120546

    Article  Google Scholar 

  25. Huang J, Liu Y, Lin J et al (2023) Novel pyrene-based aggregation-induced emission luminogen (AIEgen) composite phase change fibers with satisfactory fluorescence anti-counterfeiting, temperature sensing, and high-temperature warning functions for solar-thermal energy storage. Adv Compos Hybrid Mater 6:126. https://doi.org/10.1007/s42114-023-00706-4

    Article  CAS  Google Scholar 

  26. Aftab W, Usman A, Shi J et al (2021) Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ Sci 14:4268–4291. https://doi.org/10.1039/D1EE00527H

    Article  CAS  Google Scholar 

  27. Zeng Z, Huang D, Zhang L et al (2023) An innovative modified calcium chloride hexahydrate–based composite phase change material for thermal energy storage and indoor temperature regulation. Adv Compos Hybrid Mater 6:80. https://doi.org/10.1007/s42114-023-00654-z

    Article  CAS  Google Scholar 

  28. Prado JI, Lugo L (2020) Enhancing the thermal performance of a stearate phase change material with graphene nanoplatelets and MgO nanoparticles. ACS Appl Mater Inter 12:39108–39117. https://doi.org/10.1021/acsami.0c09643

    Article  CAS  Google Scholar 

  29. Ruan J, Chang Z, Rong H et al (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

    Article  CAS  Google Scholar 

  30. Cai J, Xi S, Zhang C et al (2023) Overview of biomass valorization: case study of nanocarbons, biofuels and their derivatives. J Agric Food Res 14:100714. https://doi.org/10.1016/j.jafr.2023.100714

    Article  CAS  Google Scholar 

  31. Guo J, Xi S, Zhang Y et al (2023) Biomass based carbon materials for electromagnetic wave absorption a mini-review. ES Food Agroforest 13:90. https://doi.org/10.30919/esfaf900

    Article  CAS  Google Scholar 

  32. Yang H, Chao W, Wang S et al (2019) Self-luminous wood composite for both thermal and light energy storage. Energy Storage Mater 18:15–22. https://doi.org/10.1016/j.ensm.2019.02.005

    Article  CAS  Google Scholar 

  33. Chen Z, Zhu R, Sheng N et al (2022) Synchronously improved thermal conductivity and anti-leakage performance for phase change composite by SiC nanowires modified wood carbon. J Energy Storage 47:103567

    Article  Google Scholar 

  34. Zhao G, Rui K, Dou SX et al (2018) Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater 28:1803291. https://doi.org/10.1002/adfm.201803291

    Article  CAS  Google Scholar 

  35. Li W, Wu S, Zhang H et al (2018) Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv Funct Mater 28:1804004. https://doi.org/10.1002/adfm.201804004

    Article  CAS  Google Scholar 

  36. Bang J, Moon IK, Jeon YP et al (2021) Fully wood-based green triboelectric nanogenerators. Appl Surf Sci 567:150806

    Article  CAS  Google Scholar 

  37. Mojumdar A, Behera HT, Ray L (2021) Mushroom mycelia-based material: an environmental friendly alternative to synthetic packaging. In: Vaishnav A, Choudhary DK (eds) Microbial polymers: applications and ecological perspectives. Springer Singapore, Singapore, pp 131–141

    Chapter  Google Scholar 

  38. Xu N, Hu X, Xu W et al (2017) Mushrooms as efficient solar steam-generation devices. Adv Mater 29:1606762. https://doi.org/10.1002/adma.201606762

    Article  CAS  Google Scholar 

  39. Yang G, Huang Z, McCarthy A et al (2023) Super-elastic carbonized mushroom aerogel for management of uncontrolled hemorrhage. Adv Sci 10:2207347. https://doi.org/10.1002/advs.202207347

    Article  CAS  Google Scholar 

  40. Sun C, Yue P, Chen R et al (2022) Chitin-glucan composite sponge hemostat with rapid shape-memory from Pleurotus eryngii for puncture wound. Carbohydr Polym 291:119553. https://doi.org/10.1016/j.carbpol.2022.119553

    Article  CAS  PubMed  Google Scholar 

  41. Hu L, Li X, Ding L et al (2021) Flexible textiles with polypyrrole deposited phase change microcapsules for efficient photothermal energy conversion and storage. Sol Energy Mater Sol Cells 224:110985. https://doi.org/10.1016/j.solmat.2021.110985

    Article  CAS  Google Scholar 

  42. Yan Q, Yang X, Zhang X et al (2023) Effect of graphitization temperature on microstructure, mechanical and ablative properties of C/C composites with pitch and pyrocarbon dual-matrix. Ceram Int 49:2860–2870. https://doi.org/10.1016/j.ceramint.2022.09.269

    Article  CAS  Google Scholar 

  43. Xu X, Cao D, Wei Y et al (2024) Impact of graphitization degree on the electrochemical and thermal properties of coal. ACS Omega. https://doi.org/10.1021/acsomega.3c06871

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mohamed AMA, Dong S, Elhefnawey M et al (2023) A comparison of the electrochemical performance of graphitized coal prepared by high-temperature heating and flash joule heating as an anode material for lithium and potassium ion batteries. Chem Phys Lett 815:140362

    Article  CAS  Google Scholar 

  45. Li J, Wei L, Jiang Q et al (2020) Salt-template assisted synthesis of cornstalk derived hierarchical porous carbon with excellent supercapacitance. Ind Crop Prod 154:112666

    Article  CAS  Google Scholar 

  46. Huang L, Hu Z, Jin H et al (2020) Salt-assisted synthesis of 2D materials. Adv Funct Mater 30(19):1908486. https://doi.org/10.1002/adfm.201908486

    Article  CAS  Google Scholar 

  47. Deguchi S, Tsujii K, Horikoshi K (2015) In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions. Sci Rep 5:11907. https://doi.org/10.1038/srep11907

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bai K, Li C, Xie B et al (2022) Emerging PEG/VO2 dual phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 239:111686

    Article  CAS  Google Scholar 

  49. Feng D, Li P, Feng Y et al (2021) Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity. Microporous Mesoporous Mat 310:110631

    Article  CAS  Google Scholar 

  50. Bauer T (2021) Chapter 1 - Fundamentals of high-temperature thermal energy storage, transfer, and conversion. In: A. Datas (Ed.) Ultra-high temperature thermal energy storage. transfer and conversion. Woodhead Publishing 1–34

  51. Wang Q, Li Y, Yu Z et al (2023) Highly porous carbon derived from hydrothermal-pyrolysis synergistic carbonization of biomass for enhanced CO2 capture. Colloid Surface A 673:131787

    Article  CAS  Google Scholar 

  52. Elsacker E, Vandelook S, Van Wylick A et al (2020) A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci Total Environ 725:138431

    Article  CAS  PubMed  Google Scholar 

  53. Leong YK, Varjani S, Lee D et al (2022) Valorization of spent mushroom substrate for low-carbon biofuel production: recent advances and developments. Bioresour Technol 363:128012

    Article  CAS  PubMed  Google Scholar 

  54. Lv X, Tan T, Cai D et al (2023) Shape-stable phase change composite for highly efficiency thermal energy storage using metal-organic framework-encapsulated yeast as porous carbon carrier. Sol Energy Mater Sol Cells 257:112379

    Article  CAS  Google Scholar 

  55. Chen C, Liu W, Wang H et al (2015) Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy 152:198–206. https://doi.org/10.1016/j.apenergy.2014.12.004

    Article  CAS  Google Scholar 

  56. Fang Y, Liu S, Li X et al (2022) Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability. Sol Energy Mater Sol Cells 237:111559

    Article  CAS  Google Scholar 

  57. Kong W, Fu X, Liu Z et al (2017) A facile synthesis of solid-solid phase change material for thermal energy storage. Appl Therm Eng 117:622–628. https://doi.org/10.1016/j.applthermaleng.2016.10.088

    Article  CAS  Google Scholar 

  58. Liu Z, Fu X, Jiang L et al (2016) Solvent-free synthesis and properties of novel solid–solid phase change materials with biodegradable castor oil for thermal energy storage. Sol Energy Mater Sol Cells 147:177–184. https://doi.org/10.1016/j.solmat.2015.12.009

    Article  CAS  Google Scholar 

  59. Yang J, Tang L, Bao R et al (2018) Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energy Mater Sol Cells 174:56–64. https://doi.org/10.1016/j.solmat.2017.08.025

    Article  CAS  Google Scholar 

  60. Yang Y, Kong W, Cai X (2018) Solvent-free preparation and performance of novel xylitol based solid-solid phase change materials for thermal energy storage. Energy Build 158:37–42. https://doi.org/10.1016/j.enbuild.2017.09.096

    Article  Google Scholar 

  61. Donar YO, Bilge S, Sinağ A (2020) Utilisation of lignin as a model biomass component for preparing a highly active photocatalyst under UV and visible light. Mater Sci Semicond Process 118:105151

    Article  CAS  Google Scholar 

  62. Song M, Shao F, Wang L et al (2023) Biomass-derived porous carbon aerogels for effective solar thermal energy storage and atmospheric water harvesting. Sol Energy Mater Sol Cells 262:112532

    Article  CAS  Google Scholar 

  63. López-Sosa LB, Zárate-Medina J, González-Avilés M et al (2022) Into the net zero emissions and climate change control: from solid carbon waste to effective solar convertors. Carbon 191:362–373. https://doi.org/10.1016/j.carbon.2022.01.066

    Article  CAS  Google Scholar 

  64. Chen X, Tang Z, Gao H et al (2020) Phase change materials for electro-thermal conversion and storage: from fundamental understanding to engineering design. iScience 23:101208. https://doi.org/10.1016/j.isci.2020.101208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang K, Fu Q, Pan N et al (2012) Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nat Commun 3:1194. https://doi.org/10.1038/ncomms2200

    Article  CAS  PubMed  Google Scholar 

  66. Liu B, Yang J, Zhang Z et al (2018) A phase change microactuator based on paraffin wax/expanded graphite/nickel particle composite with induction heating. Sensor Actuat A-Phys 275:129–136. https://doi.org/10.1016/j.sna.2018.04.006

    Article  CAS  Google Scholar 

  67. Fan X, Xiao J, Wang W et al (2018) Novel magnetic-to-thermal conversion and thermal energy management composite phase change material. Polymers 10(6):585. https://doi.org/10.3390/polym10060585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chang C, Wang Z, Fu B et al (2020) High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts. Sci Rep 10:20500. https://doi.org/10.1038/s41598-020-77442-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jia Z, Hu C, Zhang Y et al (2023) Exploring electro-thermal conversion in phase change materials: a review. Compos Part A-Appl S 175:10780. https://doi.org/10.1016/j.compositesa.2023.107809

    Article  CAS  Google Scholar 

  70. Senthil R, Punniakodi BMS, Balasubramanian D et al (2022) Numerical investigation on melting and energy storage density enhancement of phase change material in a horizontal cylindrical container. Int J Energy Res 46:19138–19158. https://doi.org/10.1002/er.8228

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52173036 and 52203038) and the Fundamental Research Funds for Central Universities (Grant 2021XXJS035).

Author information

Authors and Affiliations

Authors

Contributions

Yang Hu has made substantial contributions to the formal analysis, draft writing, software, and data collation of the book. Mengyang Zhang put forward substantive constructive suggestions on the concept of work, management, coordination responsibility, and so on. Bingqing Quan has made a substantial contribution to the investigation, software, and visualization of this work. Xiaolong Li participated in the investigation and management. Wu Hao participated in methodology, research activity planning, work visualization, and so on. Xinpeng Hu participated in the methodology and investigation of this work. Xianrong Huang provided substantial contributions to the methodology, supervision, funding acquisition, and validation of the work. Xiang Lu and Jinping Qu made substantial contributions to project administration, validation, and resources of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xianrong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42114_2024_880_MOESM1_ESM.docx

The authors declare that the data supporting the findings of this study are available within the paper, its supplementary information files. (DOCX 2817 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhang, M., Quan, B. et al. Polyethylene glycol infiltrated biomass-derived porous carbon phase change composites for efficient thermal energy storage. Adv Compos Hybrid Mater 7, 68 (2024). https://doi.org/10.1007/s42114-024-00880-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00880-z

Keywords

Navigation