Skip to main content
Log in

Fatigue-resistant polyimide aerogels with hierarchical cellular structure for broadband frequency sound absorption and thermal insulation

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Living in the noisy environment for long time would cause various diseases and seriously harm physical and mental health of mankind. In this work, water-soluble polyamide acid was used to prepare the polyimide-polyvinylpyrrolidone (PI-PVP) aerogels with hierarchical cellular structures by homogeneous mixing with pore modifier of PVP, freeze-drying, and thermal treatment. PVP could adjust pore structures, widen pore size distribution, and improve sound absorption performances for PI aerogels in wide frequency range. When the amount of PVP is 45 wt%, PI-PVP aerogels exhibit excellent sound absorption, mechanical, thermal insulation, and heat resistances performance. The noise reduction coefficient is 0.34 and average sound absorption coefficient is over 0.9 in the frequency range of 2000 ~ 6300 Hz. Young’s modulus is 7.12 kPa. Stress loss and plastic deformation after 100 compression cycles (strain of 50%) are 14.7% and 3.2%, respectively. Meantime, the thermal conductivity coefficient and the initial thermal decomposition temperature in the air are 0.044 W/(m·K) and 420 °C, respectively. Our fabricated PI-PVP aerogels in this work own broad application prospects in the fields of engineering, construction, vehicle noise reduction, and personal protection.

Graphical abstract

Sound absorption performance and mechanism of PI-PVP aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Brumm H, Goymann W, Deregnaucourt S, Geberzahn N, Zollinger S (2021) Traffic noise disrupts vocal development and suppresses immune function. Sci Adv 7:2405. https://doi.org/10.1126/sciadv.abe2405

    Article  CAS  Google Scholar 

  2. Lin J-Y, Yang C-T, Tsay YS (2021) A study on the sound insulation performance of cross-laminated timber. Materials 14(15):4144–4161. https://doi.org/10.3390/ma14154144

    Article  CAS  Google Scholar 

  3. Kryter K (1966) Psychological reactions to aircraft noise. Science 151:1346–1355. https://doi.org/10.1126/science.151.3716.1346

    Article  CAS  Google Scholar 

  4. Xie Y, Zhou B, Du A (2021) Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch. Adv Compos Hybrid Mater 4:248–256. https://doi.org/10.1007/s42114-021-00234-z

    Article  CAS  Google Scholar 

  5. Wang Y-F, Liu Y, Hu N, Shi P-R, Zhang C, Liu T-X (2022) Highly stretchable and self-healable ionogels with multiple sensitivity towards compression, strain and moisture for skin-inspired ionic sensors. Sci China Mater 65:2252–2261. https://doi.org/10.1007/s40843-021-1977-5

    Article  CAS  Google Scholar 

  6. Munzel T, Sorensen M, Daiber A (2021) Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol 18:619–636. https://doi.org/10.1038/s41569-021-00532-5

    Article  CAS  Google Scholar 

  7. Saucy A, Schaffer B, Tangermann L, Vienneau D, Wunderli JM, Roosli M (2021) Does night-time aircraft noise trigger mortality? A case-crossover study on 24886 Cardiovascular Deaths. Eur Heart J 42:835–843. https://doi.org/10.1093/eurheartj/ehaa957

    Article  CAS  Google Scholar 

  8. Ruan K-P, Guo Y-Q, Junwei Gu J-W (2021) Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54:4934–4944. https://doi.org/10.1021/acs.macromol.1c00686

    Article  CAS  Google Scholar 

  9. Cao L-T, Fu Q-X, Si Y, Ding B, Yu J-Y (2018) Porous materials for sound absorption. Compos Commun 10:25–35. https://doi.org/10.1016/j.coco.2018.05.001

    Article  Google Scholar 

  10. Yang T, Hu L, Xiong X, Petrů M, Noman M, Mishra R (2020) Sound absorption properties of natural fibers: a review. Sustainability 12(20):8477–8491. https://doi.org/10.3390/su12208477

    Article  CAS  Google Scholar 

  11. Yu J, Zhang Y, Guo Q (2022) Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv Compos Hybrid Mater 5:2297–2305. https://doi.org/10.1007/s42114-021-00403-0

    Article  CAS  Google Scholar 

  12. Zhang Y-L, Ruan K-P, Zhou K, Gu J-W (2023) Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater 35(16):2211642. https://doi.org/10.1002/adma.202211642

    Article  CAS  Google Scholar 

  13. Molesworth C, Burgess M, Wilkinson J (2020) Can babble and broadband noise present in air transportation induce learned helplessness? A laboratory based study with University Students. Appl Acoust 157:107016–107024. https://doi.org/10.1016/j.apacoust.2019.107016

    Article  Google Scholar 

  14. Zhao H, Wang Y, Wen J, Lam YW, Umnova O (2018) A slim subwavelength absorber based on coupled microslits. Appl Acoust 142:11–17. https://doi.org/10.1016/j.apacoust.2018.08.004

    Article  Google Scholar 

  15. Yang M, Chen S, Fu C, Sheng P (2017) Optimal sound-absorbing structures Mater Horiz 4(4):673–680. https://doi.org/10.1039/c7mh00129k

    Article  CAS  Google Scholar 

  16. Wu Y, Sun X, Wu W, Liu X, Lin X, Shen X (2017) Graphene foams/carbon nanotube/poly(dimethyl siloxane) composites as excellent sound absorber. Compos Part A Appl Sci Manuf 102:391–399. https://doi.org/10.1016/j.compositesa.2017.09.001

    Article  CAS  Google Scholar 

  17. Lim ZY, Putra A, Nor MJ, Yaakob MY (2018) Sound absorption performance of natural kenaf fibers. Appl Acoust 130:107–114. https://doi.org/10.1016/j.apacoust.2017.09.012

    Article  Google Scholar 

  18. Xu F, Zhang S, Wang G, Zhao D, Feng J, Wang B (2021) Lightweight low-frequency sound-absorbing composites of graphene network reinforced by honeycomb structure. Adv Mater Interfaces 8(16):2100183. https://doi.org/10.1002/admi.202100183

    Article  CAS  Google Scholar 

  19. Sun Y-Y, Xia J-P, Sun H-X, Yuan S-Q, Ge Y, Liu X-J (2019) Dual-band Fano resonance of low-frequency sound based on artificial Mie resonances. Adv Sci 6:1901307–1901313. https://doi.org/10.1002/advs.201901307

    Article  CAS  Google Scholar 

  20. Liu Z, Fan X-L, Chen L-X, Tang Y-S, Kong J, Gu J-W (2023) PBO fibers/ fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties. J Mater Sci Technol 152:16–29. https://doi.org/10.1016/j.jmst.2023.01.007

    Article  Google Scholar 

  21. Zhao X-Y, Hu Y-J, Xu X-Q, Li M-K, Han Y-X, Huang S (2023) Sound absorption polyimide composite aerogels for ancient architectures’ protection. Adv Compos Hybrid Mater 6:137. https://doi.org/10.1007/s42114-023-00716-2

    Article  CAS  Google Scholar 

  22. Mark J, Cops J, Gregory M, Elizabeth A, Magliula J, Bamford J, Bliefnick P (2020) Measurement and analysis of sound absorption by A composite foams. Appl Acoust 160:107138–107147. https://doi.org/10.1016/j.apacoust.2019.107138

    Article  Google Scholar 

  23. Fei Y, Fang W, Zhong M, Jin J, Fan P, Yang J, Fei Z, Xu L, Chen F (2019) Extrusion foaming of lightweight polystyrene composite foams with controllable cellular structure for sound absorption application. Polymers 11(1):106–115. https://doi.org/10.3390/polym11010106

    Article  CAS  Google Scholar 

  24. Dong Z-Q, Liu J, Wang Y-H, Yang X-Z (2022) Enhanced sound absorption characteristic of aluminum-polyurethane interpenetrating phase composite foams. Mater Let 323:132595. https://doi.org/10.1016/j.matlet.2022.132595

  25. Fan S-T, Zhang Y, Tan M, Wang J-X, Huang C-Y, Li B-J, Zhang S (2023) Multifunctional elastic aerogels of nanofibrous metal−organic framework for thermal insulation and broadband low-frequency sound absorption. Compos Sci Technol 242:110183. https://doi.org/10.1016/j.compscitech.2023.110183

  26. Clausi M, Zahid M, Shayganpour A et al (2022) Polyimide foam composite with nano-boron nitride (BN) and silicon carbide (SiC) for latent heat storage. Adv Compos Hybrid Mater 5:798–812. https://doi.org/10.1007/s42114-022-00426-1

    Article  CAS  Google Scholar 

  27. Yang J, Chan K-Y, Venkatesan H, Eun young Kim, Miracle Hope Adegun, Jeng-Hun Lee, Shen X, J -K Kim, (2022) Superinsulating BNNS/PVA composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett 14:54. https://doi.org/10.1007/s40820-022-00797-6

    Article  CAS  Google Scholar 

  28. Zhang X, Cheng X, Si Y, Yu J-Y, Ding B (2022) All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 16(4):5487–5495. https://doi.org/10.1021/acsnano.1c09668

    Article  CAS  Google Scholar 

  29. Benito I, Cucharero J, Al Haj Y, Hänninen T, Lokki T, Martínez-Sanz M, López-Rubio A, Martínez-Abad A, Vapaavuori J (2022) Waste biomass valorisation for the development of sustainable cellulosic aerogels and their sound absorption properties. Adv Sustainable Syst 6:2200248. https://doi.org/10.1002/adsu.202200248

    Article  CAS  Google Scholar 

  30. Zong D-D, Bai W-Y, Geng M, Yin X, Yu J-Y, Zhang S-C, Ding B (2022) Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano 16(9):13740–13749. https://doi.org/10.1021/acsnano.2c06011

    Article  CAS  Google Scholar 

  31. Jiang X-L, Zhang J, Feng Y-F, Yao C, Yang H, Chen R-Q, Peng Y-P (2022) Chitosan/clay aerogels: microstructural evolution, flame resistance and sound absorption. Appl Clay Sci 228:106624. https://doi.org/10.1016/j.clay.2022.106624

  32. Carolina S, Nieves P, Amaya R, José L, Valverde S (2019) PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties. Appl Acoust 156:40–45. https://doi.org/10.1016/j.apacoust.2019.06.023

    Article  Google Scholar 

  33. Yanagi Reo, Segi T, Oda R, Ueno T (2022) Ultralight single-wallsed carbon nanotube aerogels for low-frequency sound absorption. Adv Eng Mater 24:200357. https://doi.org/10.1002/adem.202270036

  34. Ruan K-P, Gu J-W (2022) Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 55:4134–4145. https://doi.org/10.1021/acs.macromol.2c00491

    Article  CAS  Google Scholar 

  35. Guo Y-Q, Qiu H, Ruan K-P, Zhang Y-L (2022) Gu J-W (2022) Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett 14:26. https://doi.org/10.1007/s40820-021-00767-4

    Article  CAS  Google Scholar 

  36. Song S-X, Shi Y-J, Tan J-J, Wu Z-S, Zhang M-Y, Qiang S, Nie J-Y, Liu H-T (2022) An efficient approach to fabricate lightweight polyimide/aramid sponge with excellent heat insulation and sound absorption performance. J Indust Eng Chem 109:404–412. https://doi.org/10.1016/j.jiec.2022.02.027

    Article  CAS  Google Scholar 

  37. Zhao Y-L, Geng M-X, Ma J-G, Peng L-G (2021) Fabrication, thermal and sound absorption properties of porous polyimide reinforcing by SiO2 nanoparticles. J Phys Confer Series 1838:012008. https://doi.org/10.1088/1742-6596/1838/1/012008

  38. Cao Y, Weng M, Mahmoud MHH et al (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  39. Taban E, Tajpoor A, Faridan M, Samaei S, Beheshti H (2019) Sound absorption characterization and prediction of natural coir fibers. Acoust Aust 47:67–77. https://doi.org/10.1007/s40857-019-00151-8

    Article  Google Scholar 

  40. Cao L-T, Si Y, Yin X, Yu J-Y, Ding B (2019) Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption. ACS Appl Mater Interfaces 11:35333–35342. https://doi.org/10.1021/acsami.9b12444

    Article  CAS  Google Scholar 

  41. Berardi U, Iannace G (2017) Predicting the sound absorption of natural materials: best-fit inverse laws for the sound impedance and the propagation constant. Appl Acoust 115:131–138. https://doi.org/10.1016/j.apacoust.2016.08.012

    Article  Google Scholar 

  42. Na Y, Cho G (2010) Sound absorption and viscoelastic property of Soundal automotive nonwovens and their plasma treatment. Fibers Polym 11:782–789. https://doi.org/10.1007/s12221-010-0782-5

    Article  CAS  Google Scholar 

  43. Ballagh KO (1996) Acoustical properties of wool. Appl Acoust 48:101–120. https://doi.org/10.1016/0003-682X(95)00042-8

    Article  Google Scholar 

  44. Si Y, Yu J-Y, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802–5809. https://doi.org/10.1038/ncomms6802

    Article  CAS  Google Scholar 

  45. Soltani P, Taban E, Faridan M, Samaei S, Amininasab S (2020) Experimental and computational investigation of sound absorption performance of sustainable porous materials: Yucca Gloriosa fiber. Appl Acoust 157:106999–107005. https://doi.org/10.1016/j.apacoust.2019.106999

    Article  Google Scholar 

  46. Yilmaz N, Banks-Lee P, Powell N, Michielsen S (2011) Effects of porosity, fiber size and layering sequence on sound absorption performance of needle punched nonwovens. J Appl Polym Sci 121:3056–3069. https://doi.org/10.1002/app.33312

    Article  CAS  Google Scholar 

  47. Wang J-Z, Ao Q-B, Ma J, Kang X-T, Wu C, Tang H-P, Song W-D (2019) Sound absorption performance of porous metal fiber materials with different structures. Appl Acoust 145:431–438. https://doi.org/10.1016/j.apacoust.2018.10.014

    Article  Google Scholar 

  48. Jia C, Li L, Liu Y et al (2020) Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat Commun 11:3732. https://doi.org/10.1038/s41467-020-17533-6

    Article  CAS  Google Scholar 

  49. Zong D-D, Bai W-Y, Yu J-Y, Zhang S-C, Ding B (2023) Direct synthesis of elastic and stretchable hierarchical structured fiber and graphene-based sponges for noise reduction. ACS Nano. https://doi.org/10.1021/acsnano.3c06921

    Article  Google Scholar 

  50. Li M-K, Sun Y-Y, Feng D-Y, Ruan K-P, Liu X, Gu J-W (2023) Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res 16:7820–7828. https://doi.org/10.1007/s12274-023-5594-1

    Article  CAS  Google Scholar 

  51. Ruan K-P, Shi X-T, Zhang Y-L, Guo Y-Q, Zhong X, Gu J-W (2023) Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew Chem Int Ed, 2023, 62:e202309010. https://doi.org/10.1002/anie.202309010

Download references

Funding

The authors are grateful for the supports from the National Natural Science Foundation of China (52203100). Open Fund for Defence Science and Technology Key Laboratory (WDZC-HGD-2022-09). This work was also financially supported by the Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars. We would also like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM and TGA tests.

Author information

Authors and Affiliations

Authors

Contributions

Xingyu Zhao: conceptualization, methodology, data curation, writing—original draft, project administration; Kunpeng Ruan: methodology, data curation; Hua Qiu: conceptualization; Xiao Zhong: writing—review and editing, conceptualization, supervision; Junwei Gu: conceptualization, supervision, project administration, writing—review and editing.

Corresponding authors

Correspondence to Xiao Zhong or Junwei Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 747 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Ruan, K., Qiu, H. et al. Fatigue-resistant polyimide aerogels with hierarchical cellular structure for broadband frequency sound absorption and thermal insulation. Adv Compos Hybrid Mater 6, 171 (2023). https://doi.org/10.1007/s42114-023-00747-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00747-9

Keywords

Navigation