Skip to main content
Log in

Sound absorption polyimide composite aerogels for ancient architectures’ protection

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Ancient architectures are an important part of immovable cultural heritage and the largest surviving amount of tangible cultural heritage in the world. However, the increasingly serious noise pollution will not only affect the sanctity of ancient architectures, but also damage the internal structure caused by continuous mechanical vibration, and affect their lifetime. In this paper, diaminodiphenyl ether and pyromellitic dianhydride were used as monomers, modified by triethylamine to synthesize water-soluble polyamide acids, and calcium carbonate (CaCO3) was used as filler to prepare CaCO3/polyimide (CaCO3/PI) composite aerogels by homogeneous mixing, freeze-drying, and thermal imidization. CaCO3 can effectively adjust the pore wall roughness of CaCO3/PI composite aerogels, so as to improve their sound absorption performance. When the amount of CaCO3 is 4 wt%, CaCO3/PI composite aerogels exhibit optimal sound absorption performance, excellent mechanical properties, thermal insulation, and heat resistance. The corresponding noise reduction coefficient is 0.327, and the average sound absorption coefficient is 0.903 in the frequency range of 2000 ~ 6300 Hz. Young’s modulus is 4.03 kPa, stress loss and plastic deformation after 100 compression cycles with a maximum strain of 50% are 3.27% and 2.17%, respectively. The energy loss coefficient is 0.248, the thermal conductivity is 0.038 W/(m·K), and the heat resistance index is 334.1 °C. The CaCO3/PI composite aerogels show momentous application prospects in the field of ancient architectures protection.

Graphical Abstract

Above exhibited the sound absorption coefficient and noise reduction performance of CaCO3/PI composite aerogels

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laura D, Maialen S, Ane Z, Arantza A, Iñaki A, Jesus U (2022) Methodology for assessing the vulnerability of built cultural heritage. Sci Total Environ 845:157314. https://doi.org/10.1016/j.scitotenv.2022.157314

  2. Jeremy W (2019) Science for built heritage. Science 6493(364):413. https://doi.org/10.1126/science.aax8240

  3. Zhu H, Luo W, Ciesielski P, Fang Z, Zhu J-Y, Henriksson G, Himmel M, Hu L-B (2016) Wood-derived materials for green electronics, biological devices and energy applications. Chem Rev 116:9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225

    Article  CAS  Google Scholar 

  4. Li F-S, Li Q-Y, Kimura H, Xie X-B, Zhang X-Y, Wu N-N, Sun X-Q, Xu B-B, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H-D, Du W, Guo Z-H, Hou C-X (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composite with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  Google Scholar 

  5. Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn S, Hu L-B (2020) Structure-property-function relationships of natural and engineered wood. Nat Rev Mater 5:642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  CAS  Google Scholar 

  6. Yu Z-L, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma Z-Y, Xing W-Y, Qiao C, Bergstrom L, Antonietti M, Yu S-H (2018) Fire-retardant and thermally insulating phenolic-silica aerogels. Angew Chem Int Edit 57:4538–4542. https://doi.org/10.1002/ange.201711717

    Article  CAS  Google Scholar 

  7. Liu Y, Ma X-Y, Shu L, Yang Q, Zhang Y, Huo Z-Q, Zhou Z-B (2020) Internet of things for noise mapping in smart cities: state of the art and future directions. IEEE Network 34(4):112–118. https://doi.org/10.1109/MNET.011.1900634

    Article  Google Scholar 

  8. Liu Z-M, Li B, Qiao F-R, Zhang Y, Wang X-X, Niu Z-Y, Wang J, Lu H-Q, Su S, Pan R-L, Wang Y-Y, Xue Y-B (2022) Catalytic performance of Li/Mg composite for the synthesis of glycerol carbonate from flycerol and dimethyl carbonate. ACS Omega 7(6):5032–5038. https://doi.org/10.1021/acsomega.1c05968

    Article  CAS  Google Scholar 

  9. Ding Y, Pang Z-Q, Lan K, Yao Y, Guido P, Douglas R, Zhu J-Y, Hu M, Pan X-J, Li T, Ingo B, Hu L-B (2023) Emerging engineered wood for architectures applications. Chem Rev 123(5):1843–1888. https://doi.org/10.1021/acs.chemrev.2c00450

    Article  CAS  Google Scholar 

  10. Zarah W, Luc A (2019) Recent developments in the protection of materials properties of historical wood. Prog Mater Sci 102:167–221. https://doi.org/10.1016/j.pmatsci.2018.12.001

    Article  CAS  Google Scholar 

  11. Brumm H, Goymann W, Deregnaucourt S, Geberzahn N, Zollinger S (2021) Traffic noise disrupts vocal development and suppresses immune function. Sci Adv 7:2405. https://doi.org/10.1126/sciadv.abe2405

  12. Meng X-N, Li Y-C, AlMasoud N, Wang W-S, Alomar TS, Li J, Ye Y-M, Algadi H, Seok I, Li H-D, Xu B-B, Lu N, El-Bahy ZM, Guo Z-H (2023) Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer 272:125856. https://doi.org/10.1016/j.polymer.2023.125856

  13. Liu Z, Dong C-H, Chris R, Yi X-S (2022) A pre-screening study of honeycomb sandwich structure filled with green materials for noise reduction. Compos Part A-Appl Sci Manuf 163:107226. https://doi.org/10.1016/j.compositea.2022.107226

  14. Cao L-T, Fu Q-X, Si Y, Ding B, Yu J-Y (2018) Porous materials for sound absorption. Compos Commun 10:25–35. https://doi.org/10.1016/j.coco.2018.05.001

    Article  Google Scholar 

  15. Yang T, Hu L, Xiong X, Petru M, Noman M, Mishra R (2020) Sound absorption properties of natural fibers: a review. Sustainability 12(20):8477. https://doi.org/10.3390/su12208477

    Article  CAS  Google Scholar 

  16. Li Y, Yan J, Zhang Y (2023) Low-frequency sound insulation of honeycomb membrane-type sound metamaterials with different interlayer characteristics. J Vibra Control. https://doi.org/10.1177/10775463231163973

    Article  Google Scholar 

  17. Lin J-Y, Yang C-T, Tsay Y (2021) A study on the sound insulation performance of cross-laminated timber. Materials 4:4144. https://doi.org/10.3390/ma14154144

    Article  CAS  Google Scholar 

  18. Molesworth C, Wilkinson J (2020) Can babble and broadband noise present in air transportation induce learned helplessness? A laboratory-based study with university students. Appl Acoust 157:107016. https://doi.org/10.1016/j.apacoust.2019.107016

  19. Lim Z, Putra A, Yaa M (2018) Sound absorption performance of natural kenaf fibers. Appl Acoust 130:107–114. https://doi.org/10.1016/j.apacoust.2017.09.012

    Article  Google Scholar 

  20. Xu F, Zhang S-Y, Wang G-G, Zhao D-Q, Feng J-W, Wang B-L, He X-D (2021) Lightweight low-frequency sound-absorbing composite of graphene network reinforced by honeycomb structure. Adv Mater Interfaces 8:2100183. https://doi.org/10.1002/admi.202100183

    Article  CAS  Google Scholar 

  21. Mark J, Cops J, Gregory M, Elizabeth A, Magliula J, Bamford J, Bliefnick P (2020) Measurement and analysis of sound absorption by a composite foam. Appl Acoust 160:107138. https://doi.org/10.1016/j.apacoust.2019.107138

  22. Hu S, Fu Q (2019) Preparation and sound insulation performance of superfine metal powder/nitrile-butadiene rubber-polyvinyl chloride microcellular foaming material. Adv Poly Techno 2019:7608641. https://doi.org/10.1155/2019/7608641

    Article  CAS  Google Scholar 

  23. Zong D-D, Bai W-Y, Yu J-Y, Zhang S-C, Ding B (2022) Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano 16(9):13740–13749. https://doi.org/10.1021/acsnano.2c06011

    Article  CAS  Google Scholar 

  24. Fei Y, Fang W, Zhong M, Jin J, Fan P, Yang J, Fei Z, Xu L, Chen F (2019) Extrusion foaming of lightweight polystyrene composite foams with controllable cellular structure for sound absorption application. Polymers 11(1):106. https://doi.org/10.3390/polym11010106

    Article  CAS  Google Scholar 

  25. Dong Z-Q, Liu J, Wang Y-H, Song D, Cao R-Z, Yang X-Z (2022) Enhanced sound absorption characteristic of aluminum-polyurethane interpenetrating phase composite foams. Mater Let 323:132595. https://doi.org/10.1016/j.matlet.2022.132595

  26. Xu X-B, Chen G-F, Li C-P (2020) Sound absorption performance of highly porous stainless-steel foam with reticular structure. Met Mater Int 27:3316–3324. https://doi.org/10.1007/s12540-020-00701-0

    Article  CAS  Google Scholar 

  27. Iason K, Nikolaos D, Anastasios D, Eftychios P, Athanasios V (2022) Simultaneous precise localization and classification of metal rust defects for robotic-driven maintenance and prefabrication using residual attention U-Net. Autom Constr 137:104182. https://doi.org/10.1016/j.autcon.2022.104182

  28. Xie X-Z, Huang Q-P, Long J-Y, Hu W, Liu S (2020) A new monitoring method for metal rust removal states in pulsed laser derusting via acoustic emission techniques. J Mater Process Tech 275:116321. https://doi.org/10.1016/j.jmatprotec.2019.116321

  29. Piyapong B, Khanin T, Mohammed A, Gong P-J, Chul B P (2023) Effects of cell anisotropy on conductive and radiative thermal transport in polymeric foam insulation. Energy 275:127473. https://doi.org/10.1016/j.energy.2023.127473.

  30. Clausi M, Zahid M, Shayganpour A et al (2022) Polyimide foam composite with nano-boron nitride (BN) and silicon carbide (SiC) for latent heat storage. Adv Compos Hybrid Mater 5:798–812. https://doi.org/10.1007/s42114-022-00426-1

    Article  CAS  Google Scholar 

  31. Zhang Y-L, Ruan K-P, Zhou K, Gu J-W (2023) Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater 35(16):202211642. https://doi.org/10.1002/adma.202211642

    Article  CAS  Google Scholar 

  32. Gao F-J, Liu Y, Jiao C, El-Bahy S M, Shao Q, El-Bahy Z M, Li H, Wasnik P, Algadi H, Xu B-B, Wang N, Yuan Y, Guo Z-H. (2023) Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance J Polym Sci 1. https://doi.org/10.1002/pol.20230108

  33. Mohammad N, Reza J, Hamid M, Hossein Z, Saeed B (2022) Development of optimal polymeric foams with superior sound absorption and transmission loss. J Appl Polym Sci 139:52507. https://doi.org/10.1002/app.52507

    Article  CAS  Google Scholar 

  34. Xue B, Zhang J-H (2016) Multiporous open-cell poly(vinyl formal) foams for sound absorption. RSC Adv 6:7653–7660. https://doi.org/10.1039/c5ra23285f

    Article  CAS  Google Scholar 

  35. Huang Y, Hao X-Q, Ma S-L, Wang R, Wang Y-Z (2022) Covalent organic framework-based porous materials for harmful gas purification. Chemosphere 291(1):132795. https://doi.org/10.1016/j.chemosphere.2021.132795

  36. Wang W-H, Wang Y, Li J-J, Zhang H, Yan F-L, Sun L-Q (2019) Dose effects of calcium peroxide on harmful gases emissions in the anoxic/anaerobic landscape water system. Environ Pollut 255(2):112989. https://doi.org/10.1016/j.envpol.2019.112989

  37. Ruan K-P, Guo Y-Q, Gu J-W (2021) Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 54:4934–4944. https://doi.org/10.1021/acs.macromol.1c00686

    Article  CAS  Google Scholar 

  38. Guo Y-Q, Qiu H, Ruan K-P, Zhang Y-L, Gu J-W (2022) Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett 14:26. https://doi.org/10.1007/s40820-021-00767-4

    Article  CAS  Google Scholar 

  39. Sun G-H, Zhang J-H, Zhang H, Fu X, Wang J, Han S-H (2022) Research on acoustic absorption properties of aramid honeycomb composite material reinforced by polyimide foam. Adv Eng Mater 24:2101158. https://doi.org/10.1002/adem.202101158

    Article  CAS  Google Scholar 

  40. Malakooti S, Stephanie L, Michael P, Charles R, Duane M R, Daniel S, Guo H-Q, Jonathan A, Othmane B, James C J, Linda M (2023) Fabric reinforced polyimide aerogels matrix composite with low thermal conductivity, high flexural strength, and high sound absorption coefficient. Compos Part B-Eng 2023:110751. https://doi.org/10.1016/j.compositeb.2023.110751

  41. Liu J, Chen E, Wu Y et al (2022) Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Adv Compos Hybrid Mater 5:1196–1205. https://doi.org/10.1007/s42114-022-00472-9

    Article  CAS  Google Scholar 

  42. Hou M, Zhan Q, Tao R (2019) Temperature-induced amorphization in CaCO3 at high pressure and implications for recycled CaCO3 in subduction zones. Nat Commun 10:1963. https://doi.org/10.1038/s41467-019-09742-5

    Article  CAS  Google Scholar 

  43. Lu H, Huang Y-C, Mischa B (2021) Role of water in CaCO3 biomineralization. J Am Chem Soc 143(4):1758–1762. https://doi.org/10.1021/jacs.0c11976

    Article  CAS  Google Scholar 

  44. Liu T, Li Z, Jiang T (2022) Improvement of thermodynamic properties of poly(butanediol sebacate-butanediol terephthalate) (PBSeT) composite based on the dispersion of PCaCO3@tannic acid formed by complexation of tannic acid and Ti. Adv Compos Hybrid Mater 5:2787–2800. https://doi.org/10.1007/s42114-022-00564-6

    Article  CAS  Google Scholar 

  45. Zhao X-Y, Yang F, Wang Z-C, Ma P-M, Dong W-F, Hou H-Q, Fan W, Liu T-X (2020) Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos Part B-Eng 182:107624. https://doi.org/10.1016/j.compositeb.2019.107624

  46. Weng M-M, Liu S-D, Su J-T, Xu W-H, Huang J-T, Tan W-Y, Liu Y-D, Min Y-G (2022) Hydrophobic and antimicrobial polyimide based composite phase change materials with thermal energy storage capacity, applied as multifunctional construction material. Eng Sci 19:301–311. https://doi.org/10.30919/es8e735

  47. Ruan K-P, Gu J-W (2022) Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 55:4134–4145. https://doi.org/10.1021/acs.macromol.2c00491

    Article  CAS  Google Scholar 

  48. Cao Y, Weng M, Mahmoud M (2022) Flame-retardant and leakage-proof phase change composite based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  49. Zheng S, Jiang L, Ma N, Liu X-Q (2022) Mechanically strong and thermally stable chemical cross-linked polyimide aerogels for thermal insulator. ACS Appl Mater Interfaces 14(44):50129–50141. https://doi.org/10.1021/acsami.2c14007

    Article  CAS  Google Scholar 

  50. Trinh P, Roh S, Lee J-S (2023) Conductive three-dimensional lamella network for improved sound absorption and heat transfer. ACS Appl Polym Mater 5(4):2852–2858. https://doi.org/10.1021/acsapm.3c00071

    Article  CAS  Google Scholar 

  51. Hou C-X, Yang W-Y, Kimura H, Xie X, Zhang X-Y, Sun X-Q, Yu Z-P, Yang X-Y, Zhang Y-P, Wang B, Xu B-B, Sridha D, Algadi H, Guo Z-H, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  Google Scholar 

  52. Liu Z, Fan X-L, Han M-Y, Li H, Zhang J-L, Chen L-X, Zhu Q-J, Gu J-W (2023) Branched fluorine/adamantane interfacial compatibilizer for PBO fibers/cyanate ester wave-transparent laminated composite. Chinese J Chem 41:939–950. https://doi.org/10.1002/cjoc.202200749

    Article  CAS  Google Scholar 

  53. Mu Q, Liu R-L, Kimura H, Li J-C, Jiang H-Y, Zhang X-Y, Yu Z-P, Sun X-Q, Algadi H, Guo Z-H, Du W, Hou C-X (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composite enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6:23. https://doi.org/10.1007/s42114-022-00607-y

    Article  CAS  Google Scholar 

  54. Dou L-Y, Si Y, Yu J-Y, Ding B (2022) Semi-template based, biomimetic-architecturesd and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res 15:5581–5589. https://doi.org/10.1007/s12274-022-4194-9

    Article  CAS  Google Scholar 

  55. Li T, Wei H-G, Zhang Y-Y, Wan T, Cui D-P, Zhao S-X, Zhang T, Ji Y-X, Algadi H, Guo Z-H, Chu L-Q, Cheng B-W. (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohyd Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678.

  56. Lei Z-H, Chen S, Liu W-D, Tao P, Shang W, Fu B-W, Hou C-L, Song C-Y, Deng T (2023) Lyophilization-free approach to the fabrication of conductive polymer foams enabling photo-thermo-electrical-induced cell differentiation under global illumination. Chem Mater 35(7):2846–2856. https://doi.org/10.1021/acs.chemmater.2c03651

    Article  CAS  Google Scholar 

  57. Zhang Z, Liu M-X, Ibrahim MM, Wu H-K, Wu Y, Li Y, Gaber M, El Azab IH, El-Bahy SM, Huang M-N, Jiang Y-X, Liang G-M, Liu X-T, C-Z (2022) Flexible polystyrene/graphene composite with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  CAS  Google Scholar 

  58. Podchara R, Kenji Y, Yuta H, Alvin C, Teruaki H, Masatoshi T, Shigeru Y, Masahiro O (2020) Highly ordered nano-cellular polymeric foams generated by UV-induced chemical foaming. ACS Macro Lett 9(10):1433–1438. https://doi.org/10.1021/acsmacrolett.0c00475

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the support from the Shaanxi Natural Science Foundation of Shaanxi Province (No.2023-JC-YB-356). X.Q. Xu would like to thank the Undergraduate Innovation & Business Program at Northwestern Polytechnical University (S202210699224). We would also like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM and TGA tests.

Author information

Authors and Affiliations

Authors

Contributions

Xingyu Zhao: conceptualization, methodology, data curation, writing—original draft, project administration. Yujia Hu: methodology, data curation. Xiuqi Xu: part of experimental investigation. Mukun Li: data curation, validation. Yixin Han: conceptualization, writing—review and editing. Shan Huang: conceptualization, supervision, project administration, writing—review and editing.

Corresponding authors

Correspondence to Yixin Han or Shan Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 676 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Hu, Y., Xu, X. et al. Sound absorption polyimide composite aerogels for ancient architectures’ protection. Adv Compos Hybrid Mater 6, 137 (2023). https://doi.org/10.1007/s42114-023-00716-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00716-2

Keywords

Navigation