Skip to main content
Log in

Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch

  • Brief Communication
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The slow sound wave effect is generally considered to occur in a narrow resonant frequency region or a complex coiling-up space. By numerical simulation method, this research proposes a simple deep subwavelength (less than 1/570 wavelength) structure inspired by aerogels, containing dead-ends attached to the backbone, which can produce a large non-resonant acoustic delay. The results show that the delay is induced by the exchange of acoustic energy at the dangling branches, and intrinsically influenced by the mass ratio of dead-ends to backbone particles. Interestingly, the delay is accumulated along the propagation, which could further slowdown the sound. Similar to aerogels, the propagation velocity in the hybrid structure shows a scaling law with the proportion of backbone particles, whose minimum (with the thickness less than 1/10 wavelength) is as low as 47.3% of that in the structure without dead-ends. The results indicate that the dangling branches show a definite negative effect on the fast propagation, and the sound speed may decrease accompanied with the density in a porous material with dead-ends. This work could facilitate the understanding of the non-resonant slow sound behaviors of the aerogels, and the proposed structure can be designed as basic material for lighter, thinner, and more broadband acoustic metamaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Baba T (2008) Slow light in photonic crystals. Nat Photonics 2(8):465–473

    Article  CAS  Google Scholar 

  2. Tsakmakidis KL, Hess O, Boyd RW, Zhang X (2017) Ultraslow waves on the nanoscale. Science 358(6361):eaan5196

    Article  Google Scholar 

  3. Gersen H, Karle TJ, Engelen RJP, Bogaerts W, Korterik JP, van Hulst NF, Krauss TF, Kuipers L (2005) Real-space observation of ultraslow light in photonic crystal waveguides. Phys Rev Lett 94(7):073903

    Article  CAS  Google Scholar 

  4. Santillán A, Bozhevolnyi SI (2014) Demonstration of slow sound propagation and acoustic transparency with a series of detuned resonators. Phys Rev B 89(18):184301

    Article  Google Scholar 

  5. Cicek A, Kaya OA, Yilmaz M, Ulug B (2012) Slow sound propagation in a sonic crystal linear waveguide. J Appl Phys 111(1):R47

    Article  Google Scholar 

  6. Fiore V, Yang Y, Kuzyk MC, Barbour R, Wang H (2011) Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys Rev Lett 107(13):133601

    Article  Google Scholar 

  7. Liu C, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819):490–493

    Article  CAS  Google Scholar 

  8. Yanik MF, Suh W, Wang Z, Fan S (2004) Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys Rev Lett 93(23):233903

    Article  Google Scholar 

  9. Soljačić M, Joannopoulos JD (2004) Enhancement of nonlinear effects using photonic crystals. Nat Mater 3:211–219

    Article  Google Scholar 

  10. Vlasov YA, O’Boyle M, Hamann HF, Mcnab SJ (2005) Active control of slow light on a chip with photonic crystal waveguides. Nature 438(7064):65–69

    Article  CAS  Google Scholar 

  11. Longdell JJ, Fraval E, Sellars MJ, Manson NB (2005) Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys Rev Lett 95(6):063601

    Article  CAS  Google Scholar 

  12. Groby JP, Pommier R, Aurégan Y (2016) Use of slow sound to design perfect and broadband passive sound absorbing materials. J Acoust Soc Am 139:1660–1671

    Article  Google Scholar 

  13. Christensen J, García de Abajo FJ (2010) Acoustic field enhancement and subwavelength imaging by coupling to slab waveguide modes. Appl Phys Lett 97(16):164103

    Article  Google Scholar 

  14. Molerón M, Daraio C (2015) Acoustic metamaterial for subwavelength edge detection. Nat Commun 6(1):1–6

    Article  Google Scholar 

  15. Zhu J, Christensen J, Jung J, Martin-Moreno L, Garcia-Vidal FJ (2011) A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat Phys 7(1):52–55

    Article  CAS  Google Scholar 

  16. Lemoult F, Fink M, Lerosey G (2011) Acoustic resonators for far-field control of sound on a subwavelength scale. Phys Rev Lett 107(6):064301

    Article  Google Scholar 

  17. Ma G, Yang M, Xiao S, Yang Z, Sheng P (2014) Acoustic metasurface with hybrid resonances. Nat Mater 13(9):873–878

    Article  CAS  Google Scholar 

  18. Cheng Y, Zhou C, Yuan BG, Wu DJ, Wei Q, Liu XJ (2015) Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat Mater 14(10):1013–1019

    Article  CAS  Google Scholar 

  19. Manimala JM, Kulkarni PP, Madhamshetty K (2018) Amplitude-activated mechanical wave manipulation devices using nonlinear metamaterials. Adv Compos Hybrid Mater 1(4):797–808

    Article  CAS  Google Scholar 

  20. Zhu X, Li K, Zhang P, Zhu J, Zhang J, Tian C, Liu S (2016) Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nat Commun 7(1):1–7

    Article  CAS  Google Scholar 

  21. Liang Z, Li J (2012) Extreme acoustic metamaterial by coiling up space. Phys Rev Lett 108(11):114301

    Article  Google Scholar 

  22. Gross J, Fricke J (1992) Ultrasonic velocity measurements in silica, carbon and organic aerogels. J Non Cryst Solids 145:217–222

    Article  CAS  Google Scholar 

  23. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press

    Google Scholar 

  24. Brinker CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. Academic press

  25. Fan H, Hartshorn C, Buchheit T, Tallant D, Assink R, Simpson R, Kissel DJ, Lacks DJ, Torquato S, Brinker CJ (2007) Modulus–density scaling behaviour and framework architecture of nanoporous self-assembled silicas. Nat Mater 6(6):418–423

    Article  CAS  Google Scholar 

  26. Murillo JSR, Bachlechner ME, Campo FA, Barbero EJ (2010) Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation. J Non Cryst Solids 356(25–27):1325–1331

    Article  Google Scholar 

  27. Ma HS, Prévost JH, Jullien R, Scherer GW (2001) Computer simulation of mechanical structure–property relationship of aerogels. J Non Cryst Solids 285(1–3):216–221

    Article  CAS  Google Scholar 

  28. Ma HS, Roberts AP, Prévost JH, Jullien R, Scherer GW (2000) Mechanical structure–property relationship of aerogels. J Non Cryst Solids 277(2–3):127–141

    Article  CAS  Google Scholar 

  29. Botet R, Jullien R, Kolb M (1984) Gelation in kinetic growth models. Phys Rev A 30(4):2150

    Article  Google Scholar 

  30. Kolb M, Botet R, Jullien R (1983) Scaling of kinetically growing clusters. Phys Rev Lett 51(13):1123–1126

    Article  Google Scholar 

  31. Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51(13):1119

    Article  Google Scholar 

  32. Xie P, Sun W, Liu Y, Du A, Zhang Z, Wu G, Fan R (2019) Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129:598–606

    Article  Google Scholar 

  33. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-020-00202-z

    Article  Google Scholar 

  34. Krowne CM, Zhang Y (2007) Physics of Negative Refraction and Negative Index Materials. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  35. Brunet T, Merlin A, Mascaro B, Zimny K, Leng J, Poncelet O, Aristégui C, Mondain-Monval O (2015) Soft 3D acoustic metamaterial with negative index. Nat Mater 14:384–388

    Article  CAS  Google Scholar 

  36. Brunet T, Leng J, Mondain-Monval O (2013) Soft acoustic metamaterials. Science 342:323–324

    Article  CAS  Google Scholar 

  37. Li Y, Liang B, Gu ZM, Zou XY, Cheng JC (2013) Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci Rep 3:2546

    Article  Google Scholar 

  38. Xie Y, Wang W, Chen H, Konneker A, Popa B, Cummer SA (2014) Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat Commun 5:5553

    Article  CAS  Google Scholar 

  39. Du A, Xie Y, Li Y, Pan Y, Wu G, Zhou B (2020) Ultra-slow sound in non-resonant meta-aerogel. arXiv:2003.09059

Download references

Funding

This work was funded and performed under the financial support from the National Natural Science Foundation of China (No. 11874284) and the National Key Research and Development Program of China (2017YFA0204600).

Author information

Authors and Affiliations

Authors

Contributions

A.D. conceived the original idea of constructing the slow sound propagation by numerical simulation method. Y.X. coded the methods to generate DLCA-growth-based structure, to obtain the statistics of dead-ends in simulated aerogel structure, and conducted the numerical simulations of sound propagation. A.D. and B.Z. provided the guidance for the consideration of the mechanism. A.D. and Y.X. jointly completed the theoretical derivation. Y.X. wrote the initial manuscript. A.D. and Y.X. revised the manuscript for submission.

Corresponding author

Correspondence to Ai Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MOV 33407 KB)

Supplementary file2 (PDF 5858 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhou, B. & Du, A. Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch. Adv Compos Hybrid Mater 4, 248–256 (2021). https://doi.org/10.1007/s42114-021-00234-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00234-z

Keywords

Navigation