Skip to main content
Log in

Manganese dioxide nanoparticles/reduced graphene oxide nanocomposites for hybrid capacitive desalination

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The faradic asymmetric electrodes have recently attracted attention in capacitive deionization (CDI) because of their capability to remove both Na+ and Cl ions from saline solution to meet the freshwater requirements. However, the fabrication of CDI electrodes that are high-performing and stable remains a challenge. In this work, an asymmetric electrode with highly stable CDIs has been fabricated by using reduced graphene oxide (RGO) as positive electrodes and spherical-like manganese dioxide nanoparticles decorated RGO sheets (MnO2/RGO) as negative electrodes to selectively capture salt ions from saline solution. MnO2/RGO electrodes exhibit a large specific capacitance of about 485 F g−1 at 10 mV s−1 in NaCl with lower internal resistance, which is significantly higher than that of recent electrode materials. Due to the superior specific capacitance and lower internal resistance behavior of MnO2/RGO electrodes, asymmetric CDI device has been assembled for the desalination of salt using saline water. Especially, MnO2/RGO//RGO-based asymmetric CDI device shows higher salt uptake capacity (SAC) of 52 mg g−1 with higher average salt adsorption capacity (ASAR) of 2.7 mg g−1 min−1 than recently reported electrode materials. Furthermore, the recycling studies indicate that MnO2/RGO//RGO electrodes are promising electrode materials for prolonged CDI operation. In summary, the studies confirmed that the MnO2/RGO system offers excellent potential for producing portable drinking water by capacitive deionization of seawater.

Graphical Abstract

A capacitive deionization (CDI) device was constructed with electrodes of MnO2/RGO and performed at 1.2 V in 500 mg L-1 NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sarijan S, Azman S, Said MIM, Jamal MH (2021) Microplastics in freshwater ecosystems: a recent review of occurrence, analysis, potential impacts, and research needs. Environ Sci Pollut Res 28(2):1341–1356

    Article  CAS  Google Scholar 

  2. Sun J, Mu Q, Kimura H, Murugadoss V, He M, Du W, Hou C (2022) Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater 5:627–640

    Article  Google Scholar 

  3. Zhao W, Yan Z, Qian L (2020) Graphitic carbon nitride: preparation, properties and applications in energy storage, Engineered. Science 10:24–34

    CAS  Google Scholar 

  4. Wu N, Du W, Hu Q, Jiang SVQ (2020) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13(19):11–23

    Google Scholar 

  5. Hong H, Gao L, Zheng Y, Xing X, Sun F, Liu T, Murugadoss V, Guo Z, Yang M, Zhang H (2021) A path of multi-energy hybrids of concentrating solar energy and carbon fuels for low CO2 emission. ES Energy Environ 13:1–7

    CAS  Google Scholar 

  6. Saleem MW, Im B-G, Kim W-S (2018) Electrochemical CDI integration with PRO process for water desalination and energy production: concept, simulation, and performance evaluation. J Electroanal Chem 822:134–143

    Article  CAS  Google Scholar 

  7. Kim DH (2011) A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination 270(1–3):1–8

    Article  CAS  Google Scholar 

  8. Youssef P, Al-Dadah R, Mahmoud S (2014) Comparative analysis of desalination technologies. Energy Procedia 61:2604–2607

    Article  Google Scholar 

  9. Porada S, Zhao R, Van Der Wal A, Presser V, Biesheuvel P (2013) Review on the science and technology of water desalination by capacitive deionization. Prog Mater Sci 58(8):1388–1442

    Article  CAS  Google Scholar 

  10. Xing W, Liang J, Tang W, He D, Yan M, Wang X, Luo Y, Tang N, Huang M (2020) Versatile applications of capacitive deionization (CDI)-based technologies. Desalination 482:114390

    Article  CAS  Google Scholar 

  11. Oladunni J, Zain JH, Hai A, Banat F, Bharath G, Alhseinat E (2018) A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: from theory to practice. Sep Purif Technol 207:291–320

    Article  CAS  Google Scholar 

  12. Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G (2019) Various cell architectures of capacitive deionization: recent advances and future trends. Water Res 150:225–251

    Article  CAS  Google Scholar 

  13. Liu P, Yan T, Shi L, Park HS, Chen X, Zhao Z, Zhang D (2017) Graphene-based materials for capacitive deionization. J Mater Chem A 5(27):13907–13943

    Article  CAS  Google Scholar 

  14. Li Y, Chen N, Li Z, Shao H, Qu L (2020) Frontiers of carbon materials as capacitive deionization electrodes. Dalton Trans 49(16):5006–5014

    Article  CAS  Google Scholar 

  15. Zheng H, Li L, Peng ST, Li MX, Yang LH, Feng CQ, Yang SJ (2021) Synthesis and electrochemical performances of MnV2O6/rGO nanocomposite as new anode material for lithium-ion battery application. Sci Adv Mater 13:642–649

    Article  CAS  Google Scholar 

  16. Yasin AS, Mohamed AY, Kim DH, Doan TLL, Chougule S (2021) Design of zinc oxide nanoparticles and graphene hydrogel co-incorporated activated carbon for efficient capacitive deionization. Sep Purif Technol 277:119428

    Article  CAS  Google Scholar 

  17. Halabaso ER, Salvacion JW, Kuncoro EP, Doong R-A (2021) Highly efficient capacitive deionization of brackish water with manganese vanadate nanorod decorated reduced graphene oxide electrode. Environ Sci Nano 8(10):2844–2854

    Article  CAS  Google Scholar 

  18. Liu X, Du S, Zuo X, Zhang X, Jiang Y (2022) Facile synthesis of Ni(OH)2 nanoarrays on graphene@ carbon fabric as dual-functional electrochemical materials for supercapacitors and capacitive desalination. RSC Adv 12(2):1177–1183

    Article  CAS  Google Scholar 

  19. Xie HY, Li YZ, Zhang YQ, Jin HX, Zhang Q, Li KF (2021) Preparation and performance of rod-like lithium-rich spinel Li1+xMn2-xO4 by the hydrothermal synthesis-solid phase calcination method. Sci Adv Mater 13:353–357

    Article  CAS  Google Scholar 

  20. Hu X, Min X, Li X, Si M, Liu L, Zheng J, Yang W, Zhao F (2022) Co-Co3O4 encapsulated in nitrogen-doped carbon nanotubes for capacitive desalination: effects of nano-confinement and cobalt speciation. J Colloid Interface Sci 616:389–400

    Article  CAS  Google Scholar 

  21. Liu X, Zhang S, Feng G, Wu Z-G, Wang D, Albaqami MD, Zhong B, Chen Y, Guo X, Xu X (2021) Core–shell MOF@ COF motif hybridization: selectively functionalized precursors for titanium dioxide nanoparticle-embedded nitrogen-rich carbon architectures with superior capacitive deionization performance. Chem Mater 33(5):1657–1666

    Article  CAS  Google Scholar 

  22. Bharath G, Hai A, Rambabu K, Ahmed F, Haidyrah AS, Ahmad N, Hasan SW, Banat F (2021) Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon. Environ Res 197:111110

    Article  CAS  Google Scholar 

  23. Li Q, Zheng Y, Xiao D, Or T, Gao R, Li Z, Feng M, Shui L, Zhou G, Wang X (2020) Faradaic electrodes open a new era for capacitive deionization. Adv Sci 7(22):2002213

    Article  CAS  Google Scholar 

  24. Zhang C, He D, Ma J, Tang W, Waite TD (2018) Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: a review. Water Res 128:314–330

    Article  CAS  Google Scholar 

  25. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11(5):19–30

    CAS  Google Scholar 

  26. Zhao Y, Li Y, Zhang D, Song S, Wang J, Ke Y (2021) In-situ grown sheet-like nanostructure of NiCo2S4 for high performance supercapacitors. Sci Adv Mater 13(2021):1065–1069

    Article  CAS  Google Scholar 

  27. Pan W, Zhang M, Xue D, Sun X (2021) Supercapacitance property study of 3D open-framework Prussian blue in neutral electrolyte. Sci Adv Mater 13:438–448

    Article  CAS  Google Scholar 

  28. Wang Z, He S, Nguyen V, Riley KE (2020) Ionic liquids as “Green solvent and/or electrolyte” for energy interface. Eng Sci 11:3–18

    CAS  Google Scholar 

  29. Liu C, Fang Q, Wang D, Yan C, Liu F, Wang N, Guo Z, Jiang Q (2019) Carbon and boron nitride nanotubes: structure, property and fabrication. ES Mater Manuf 3(2):2–15

    Google Scholar 

  30. Zhang H, Ding X, Wang S, Huang Y, Zeng X-F, Maganti S, Jiang Q, Huang M, Guo Z, Cao D (2022) Heavy metal removal from wastewater by a polypyrrole-derived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Eng Sci 18:320–328

    CAS  Google Scholar 

  31. Si H, Li L, Hao W, Seidl L, Cheng X, Xu H, Jia G, Schneider O, An S, Qiu X (2019) Structural transformation and cycling improvement of nanosized flower-like γ-MnO2 in a sodium battery. ACS Appl Energy Mater 2(7):5050–5056

    Article  CAS  Google Scholar 

  32. Su D, Ahn H-J, Wang G (2013) Hydrothermal synthesis of α- MnO2 and β- MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J Mater Chem A 1(15):4845–4850

    Article  CAS  Google Scholar 

  33. Abi Jaoude M, Alhseinat E, Polychronopoulou K, Bharath G, Darawsheh IFF, Anwer S, Baker MA, Hinder SJ, Banat F (2020) Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochim Acta 330:135202

    Article  Google Scholar 

  34. Liu Y-H, Hsi H-C, Li K-C, Hou C-H (2016) Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization. ACS Sustain Chem Eng 4(9):4762–4770

    Article  CAS  Google Scholar 

  35. Bharath G, Arora N, Hai A, Banat F, Savariraj D, Taher H, Mangalaraja R (2020) Synthesis of hierarchical Mn3O4 nanowires on reduced graphene oxide nanoarchitecture as effective pseudocapacitive electrodes for capacitive desalination application. Electrochim Acta 337:135668

    Article  CAS  Google Scholar 

  36. Govindan B, Alhseinat E, Darawsheh IF, Ismail I, Polychronopoulou K, Jaoude MA, Arangadi AF, Banat F (2020) Activated carbon derived from phoenix dactylifera (palm tree) and decorated with MnO2 nanoparticles for enhanced hybrid capacitive deionization electrodes. ChemistrySelect 5(11):3248–3256

    Article  CAS  Google Scholar 

  37. Huang Y, Chen F, Guo L, Zhang J, Chen T, Yang HY (2019) Low energy consumption dual-ion electrochemical deionization system using NaTi2 (PO4) 3-AgNPs electrodes. Desalination 451:241–247

    Article  CAS  Google Scholar 

  38. Wang J, Guo X, Cui R, Huang H, Liu B, Li Y, Wang D, Zhao D, Dong J, Li S (2020) MnO2/porous carbon nanotube/MnO2 nanocomposites for high-performance supercapacitor. ACS Appl Nano Mater 3(11):11152–11159

    Article  CAS  Google Scholar 

  39. Li XF, Diao GQ, Xie F, Liao WH, Agostini L, Xiao DS, Liu GC, Wu WX, Zhan HB, Huang SW (2021) Influence on electrochemical properties of different types of manganese oxides. Sci Adv Mater 13:569–573

    Article  Google Scholar 

  40. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4(3):707–715

    Article  CAS  Google Scholar 

  41. Hong SB, Jeong J-M, Kang HG, Seo D, Cha Y, Jeon H, Lee GY, Irshad M, Kim DH, Hwang SY (2018) Fast and scalable hydrodynamic synthesis of MnO2/defect-free graphene nanocomposites with high rate capability and long cycle life. ACS Appl Mater Interfaces 10(41):35250–35259

    Article  CAS  Google Scholar 

  42. Ranganatha S (2020) 2D Nanostructured materials for high performance electrochemical supercapacitors. Adapting 2D Nanomaterials for Advanced Applications, ACS Symposium Series Vol. 1353 Chapter 4, pp 79–92

  43. Ghosh K, Yue CY, Sk MM, Jena RK, Bi S (2018) Development of a 3D graphene aerogel and 3D porous graphene/MnO2@ polyaniline hybrid film for all-solid-state flexible asymmetric supercapacitors. Sustainable Energy Fuels 2(1):280–293

    Article  CAS  Google Scholar 

  44. Liu Y, Jiang J, Yuan Y, Jiang Q, Yan C (2019) Vertically aligned NiCo2O4 nanosheet-encapsulated carbon fibers as a self-supported electrode for superior Li+ storage performance. Nanomaterials 9(9):1336

    Article  CAS  Google Scholar 

  45. Chen B, Wang Y, Chang Z, Wang X, Li M, Liu X, Zhang L, Wu Y (2016) Enhanced capacitive desalination of MnO2 by forming composite with multi-walled carbon nanotubes. RSC Adv 6(8):6730–6736

    Article  CAS  Google Scholar 

  46. Wadi VS, Ibrahim Y, Arangadi AF, Kilybay A, Mavukkandy MO, Alhseinat E, Hasan SW (2022) Three-dimensional graphene/MWCNT-MnO2 nanocomposites for high-performance capacitive deionization (CDI) application. J Electroanal Chem 914:116318

    Article  CAS  Google Scholar 

  47. Leong ZY, Yang HY (2019) A study of MnO2 with different crystalline forms for pseudocapacitive desalination. ACS Appl Mater Interfaces 11(14):13176–13184

    Article  CAS  Google Scholar 

  48. Wu T, Wang G, Wang S, Zhan F, Fu Y, Qiao H, Qiu J (2018) Highly stable hybrid capacitive deionization with a MnO2 anode and a positively charged cathode. Environ Sci Technol Lett 5(2):98–102

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. GRANT2120].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faheem Ahmed or Ahmad Umar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F., Umar, A., Kumar, S. et al. Manganese dioxide nanoparticles/reduced graphene oxide nanocomposites for hybrid capacitive desalination. Adv Compos Hybrid Mater 6, 19 (2023). https://doi.org/10.1007/s42114-022-00601-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00601-4

Keywords

Navigation