Skip to main content
Log in

Capacitive deionization performance of asymmetric nanoengineered CoFe2O4 carbon nanomaterials composite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Capacitive deionization (CDI) is a relatively new technique that uses electric double layer (EDL) effects, high-affinity chemical groups, redox-active materials, and membrane capacitive electrosorption principle for the desalination. In this paper, hydrothermal synthesis of cobalt ferric oxide (CFO) metal oxide nanoparticles (NPs) coupled with the vacuum filtration method, or the freeze-drying method is used to fabricate high-performance nanocomposites: CFO-graphene, CFO-CNTs, and CFO-3DrGO. Two times of hydrothermal reaction methods were conducted to fabricate the CFO-3DrGO nanoengineered as a pseudocapacitive/EDL electrode. The results have demonstrated that the SAC of CFO-3DrGO/CFO (64.5 mg g−1) is greater than that of the CFO-graphene/CFO (55.16 mg g−1) and CFO-CNTs/CFO (21.5 mg g−1) due to the better surface area of the CFO-3DrGO nanocomposite (330 m2 g−1). The higher surface area of the CFO-3DrGO is due to the porous and interconnected 3D structure of the 3DrGO, and it provides a larger surface area to form EDL capacitance. In addition, the added porous 3DrGO entangled with the spinel crystals (CoFe2O4) in the composite allowed for a quick ion diffusion across the interconnected open macroporous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Acharya J, Raj BGS, Ko TH, Khil M-S, Kim H-Y, Kim B-S (2020) Facile one pot sonochemical synthesis of CoFe2O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications. Int J Hydrogen Energy 45:3073–3085

    CAS  Google Scholar 

  • Al Suwaidi F, Younes H, Sreepal V, Nair RR, Aubry C, Zou L (2019) Strategies for tuning hierarchical porosity of 3D rGO to optimize ion electrosorption. 2D Mater 6:045010

    Google Scholar 

  • Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80:61–164

    Google Scholar 

  • Bharath G, Arora N, Hai A, Banat F, Savariraj D, Taher H, Mangalaraja RV (2020) Synthesis of hierarchical Mn3O4 nanowires on reduced graphene oxide nanoarchitecture as effective pseudocapacitive electrodes for capacitive desalination application. Electrochimica Acta 337:135668

  • Biesheuvel P, Van der Wal A (2010) Membrane capacitive deionization. J Membr Sci 346:256–262

    CAS  Google Scholar 

  • Cao J, Wang Y, Chen C, Yu F, Ma J (2018) A comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization. J Colloid Interface Sci 518:69–75

    CAS  Google Scholar 

  • Cao C, Wu X, Zheng Y, Chen Y (2020) Three-dimensional cubic ordered mesoporous carbon with chitosan for capacitive deionization disinfection of water. Environ Sci Pollut Res 27:15001–15010

    CAS  Google Scholar 

  • Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    CAS  Google Scholar 

  • Christensen G, Younes H, Hong H, Peterson GP (2013) Alignment of carbon nanotubes comprising magnetically sensitive metal oxides by nonionic chemical surfactants. Journal of Nanofluids 2(1):25–28

  • Conway BE (2013) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Sci Bus Media

  • El-Deen AG, Barakat NA, Khalil KA, Motlak M, Kim HY (2014) Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization. Ceram Int 40:14627–14634

    CAS  Google Scholar 

  • Elseman AM, Fayed MG, Mohamed SG, Rayan DA, Allam NK, Rashad MM, Song QL (2020) CoFe2O4@carbon spheres electrode: a one-step solvothermal method for enhancing the electrochemical performance of hybrid supercapacitors. ChemElectroChem 7:526–534

    CAS  Google Scholar 

  • Fraggedakis D, McEldrew M, Smith RB, Krishnan Y, Zhang Y, Bai P, Chueh WC, Shao-Horn Y, Bazant MZ (2021) Theory of coupled ion-electron transfer kinetics. Electrochimica Acta 367:137432

    CAS  Google Scholar 

  • Getirana A, Kumar S, Girotto M, Rodell M (2017) Rivers and floodplains as key components of global terrestrial water storage variability. Geophys Res Lett 44:10359–10368

    Google Scholar 

  • Hassanvand A, Chen GQ, Webley PA, Kentish SE (2018) A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Water Res 131:100–109

    CAS  Google Scholar 

  • He D, Wong CE, Tang W, Kovalsky P, Waite TD (2016) Faradaic reactions in water desalination by batch-mode capacitive deionization. Environ Sci Technol Lett 3:222–226

    CAS  Google Scholar 

  • Jaoude MA, Alhseinat E, Polychronopoulou K, Bharath G, Darawsheh IFF, Anwer S, Baker MA, Hinder SJ, Banat F (2020) Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochimica Acta 330:135202

  • Khan D, Qiu L, Liang C, Mirza K, Kashif M, Yang B, Kra KL, Wang Y, Li X (2022) Formation and distribution of different pore types in the lacustrine calcareous shale: insights from XRD, FE-SEM, and low-pressure nitrogen adsorption analyses. ACS Omega 7:10820–10839

    CAS  Google Scholar 

  • Kuo S-L, Wu N-L (2005) Electrochemical capacitor of MnFe2O4 with NaCl electrolyte. Electrochem Solid-State Lett 8:A495–A499

    CAS  Google Scholar 

  • Li H, Zou L, Pan L, Sun Z (2010) Novel graphene-like electrodes for capacitive deionization. Environ Sci Technol 44:8692–8697

    CAS  Google Scholar 

  • Li Z, Song B, Wu Z, Lin Z, Yao Y, Moon K-S, Wong C (2015) 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy 11:711–718

    CAS  Google Scholar 

  • Li G, Cai W, Zhao R, Hao L (2019) Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics. Environ Sci Pollut Res 26:17787–17796

    CAS  Google Scholar 

  • Li Y, Song C, Chen J, Shang X, Chen J, Li Y, Huang M, Meng F (2020) Sulfur and nitrogen Co-doped activated CoFe2O4@C nanotubes as an efficient material for supercapacitor applications. Carbon 162:124–135

    CAS  Google Scholar 

  • Li G, Cao Y, Zhang Z, Hao L (2021) Removal of ammonia nitrogen from water by mesoporous carbon electrode–based membrane capacitance deionization. Environ Sci Pollut Res 28:7945–7954

    CAS  Google Scholar 

  • Liu X, Wang J (2021) Adsorptive removal of Sr2+ and Cs+ from aqueous solution by capacitive deionization. Environ Sci Pollut Res 28:3182–3195

    CAS  Google Scholar 

  • McGuinness NB, Garvey M, Whelan A, John H, Zhao C, Zhang G, Dionysiou DD, Byrne JA, Pillai SC (2015) Nanotechnology solutions for global water challenges. In Water challenges and solutions on a global scale. American Chemical Society, pp 375–411

  • Moronshing M, Subramaniam C (2017) Scalable approach to highly efficient and rapid capacitive deionization with CNT-thread as electrodes. ACS Appl Mater Interfaces 9:39907–39915

    CAS  Google Scholar 

  • Moustafa HM, Obaid M, Nassar MM, Abdelkareem MA, Mahmoud MS (2020) Titanium dioxide-decorated rGO as an effective electrode for ultrahigh-performance capacitive deionization. Sep Purif Technol 235:116178

    CAS  Google Scholar 

  • World Water Assessment Programme (United Nations), and UN-Water (2009) Water in a changing world

  • Qu Y, Yang H, Yang N, Fan Y, Zhu H, Zou G (2006) The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater Lett 60:3548–3552

    CAS  Google Scholar 

  • Ren C, Jia X, Zhang W, Hou D, Xia Z, Huang D, Hu J, Chen S, Gao S (2020) Hierarchical porous integrated Co1−xS/CoFe2O4@rGO nanoflowers fabricated via temperature‐controlled in situ calcining sulfurization of multivariate CoFe‐MOF‐74@rGO for high‐performance supercapacitor. Adv Funct Mater 30(45):2004519

  • Sami SK, Seo JY, Hyeon S-E, Shershah MSA, Yoo P-J, Chung C-H (2018) Enhanced capacitive deionization performance by an rGO–SnO2 nanocomposite modified carbon felt electrode. RSC Adv 8:4182–4190

    CAS  Google Scholar 

  • Secretariat UNWWAP (2016) Water and jobs.

  • Shi W, Li H, Cao X, Leong ZY, Zhang J, Chen T, Zhang H, Yang HY (2016) Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores. Sci Rep 6:18966

    CAS  Google Scholar 

  • Shi M, Qiang H, Chen C, Bano Z, Wang F, Xia M, Lei W (2021) Construction and evaluation of a novel three-electrode capacitive deionization system with high desalination performance. Sep Purif Technol 273:118976

  • Shi M, Ji G, Cui X, Liu C, Hong X, Ding Z, Qiang H, Wang F, Xia M (2022) Simple control of carbon mass loading in capacitive deionization for efficient deionized water production. Sep Purif Technol 301:121962

    CAS  Google Scholar 

  • Si W, Li H (2021) Understanding the enhanced capacitive desalination performance of spherical ZnCo2O4 electrode. Adv Mater Interfaces 8:2100125

    CAS  Google Scholar 

  • Singh PP (2021) Functionalized magnetic carbon nanomaterials for environmental remediation. Environ Appl Carbon Nanomater‐Based Devices 227–249

  • Tang W, He D, Zhang C, Kovalsky P, Waite TD (2017) Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res 120:229–237

    CAS  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505

    CAS  Google Scholar 

  • Wang J, Chen Q, Hou B, Peng Z (2004) Synthesis and magnetic properties of single-crystals of MnFe2O4 nanorods. Eur J Inorg Chem 2004:1165–1168

    Google Scholar 

  • Wang H, Zhang D, Yan T, Wen X, Shi L, Zhang J (2012) Graphene prepared via a novel pyridine–thermal strategy for capacitive deionization. J Mater Chem 22:23745–23748

    CAS  Google Scholar 

  • Wang Z, Dou B, Zheng L, Zhang G, Liu Z, Hao Z (2012b) Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination 299:96–102

    CAS  Google Scholar 

  • Wang Y, Han X, Wang R, Xu S, Wang J (2015) Preparation optimization on the coating-type polypyrrole/carbon nanotube composite electrode for capacitive deionization. Electrochim Acta 182:81–88

    CAS  Google Scholar 

  • Wimalasiri Y, Zou L (2013) Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–471

    CAS  Google Scholar 

  • Xu Y, Xiang S, Zhou H, Wang G, Zhang H, Zhao H (2021) Intrinsic pseudocapacitive affinity in manganese spinel ferrite nanospheres for high-performance selective capacitive removal of Ca2+ and Mg2+. ACS Appl Mater Interfaces 13:38886–38896

    CAS  Google Scholar 

  • Yan W, Kim JY, Xing W, Donavan KC, Ayvazian T, Penner RM (2012) Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem Mater 24:2382–2390

    CAS  Google Scholar 

  • Yan C, Kanaththage YW, Short R, Gibson CT, Zou L (2014) Graphene/polyaniline nanocomposite as electrode material for membrane capacitive deionization. Desalination 344:274–279

    CAS  Google Scholar 

  • Yao Q, Shi Z, Liu Q, Gu Z, Ning R (2018) The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption. Environ Sci Pollut Res 25:3313–3319

    CAS  Google Scholar 

  • Younes H, Zou L (2020) Asymmetric configuration of pseudocapacitive composite and rGO electrodes for enhanced capacitive deionization. Environ Sci: Water Res Technol 6:392–403

    CAS  Google Scholar 

  • Younes H, Ravaux F, El Hadri N, Zou L (2019) Nanostructuring of pseudocapacitive MnFe2O4/porous rGO electrodes in capacitive deionization. Electrochim Acta 306:1–8

    CAS  Google Scholar 

  • Younes H, Ravaux F, El Hadri N, Zou L (2019) Nanostructuring of pseudocapacitive MnFe2O4/porous rGO electrodes in capacitive deionization. Electrochim Acta 306:1–8

    CAS  Google Scholar 

  • Younes H, Hong H, Peterson GP (2021) A Novel Approach to Fabricate Carbon Nanomaterials–Nanoparticle Solids through Aqueous Solutions and Their Applications. Nanomanuf Metrol 4(4):226–236

  • Younes H, Kuang X, Lou D, DeVries B, Rahman MM, Hong H (2022) Magnetic-field-assisted DLP stereolithography for controlled production of highly aligned 3D printed polymer-Fe3O4@ graphene nanocomposites. Mater Res Bull 154:111938

  • Zhang D, Wen X, Shi L, Yan T, Zhang J (2012) Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale 4:5440–5446

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Ding Luo for preparing the CNTs-CFO and graphene-CFO samples.

Author information

Authors and Affiliations

Authors

Contributions

HY: conceptualization, investigation, supervision, writing—original draft, reviewing, and editing. MMR: writing—original draft. HH: review of the original draft. MA: review of the original draft. FR: TEM, SEM, and STA measurements.

Corresponding author

Correspondence to Hammad Younes.

Ethics declarations

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3228 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younes, H., Rahman, M.M., Hong, H. et al. Capacitive deionization performance of asymmetric nanoengineered CoFe2O4 carbon nanomaterials composite. Environ Sci Pollut Res 30, 32539–32549 (2023). https://doi.org/10.1007/s11356-022-24516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24516-1

Keywords

Navigation