Skip to main content
Log in

Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As a class of toxic compounds, phenols are difficult to biodegrade and will exist in the environment for a long time, posing potential risks to the environment and human beings. To avoid threatening the water environment and air quality, phenolic pollutants need to be treated effectively. This paper reviews the data concerning the environmental degradation of phenols and substituted phenols, both in the water and in the air. The values are respectively obtained from the experimental and theoretical researches. In wastewater, several advanced oxidation processes (AOPs) based on powerful transitory species which can efficiently degrade phenolic compounds were summarized. In terms of the atmospheric oxidative degradation, the reaction of phenols and substituted phenols with oxidants such as hydroxyl radical (•OH), nitrate radical (•NO3), Cl atoms, and ozone is probably a major degradation mechanism. The atmospheric degradation regular patterns of phenolic compounds initiated by different oxidants were also concluded.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2019, Elsevier

Fig. 2

Copyright 2019, Elsevier

Fig. 3

Copyright 2016, RSC publishing

Similar content being viewed by others

References

  1. Guo J, Chen Z, Waras A, Kong J, Mojammel AK, David PY, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4:534–542

    Article  CAS  Google Scholar 

  2. Hou C, Fan G, Xie X, Zhang X, Sun X, Zhang Y, Wang B, Du W, Fan R (2021) TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies. J Alloys Compounds 855:157499

  3. Pranav J, Sujit S, Suresh SS, Shivanand BT, Patil PS, Ramteke AA, Hiremath NG, Neeraj RP (2020) Green AgNPs decorated ZnO nanocomposites for dye degradation and antimicrobial applications. Eng Sci 12:79–94. https://doi.org/10.30919/es8d1138

    Article  CAS  Google Scholar 

  4. Deng Z, Sun S, Li H, Pan D, Patil RR, Guo Z, Seok I (2021) Modification of coconut shell-based activated carbon and purification of wastewater. Adv Compos Hybrid Mater 4(1):65–73

    Article  CAS  Google Scholar 

  5. Hou C, Yang W, Xie X, Sun X, Wang J, Naik N, Pan D, Mai X, Guo Z, Dang F, Du W (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interface Sci 596:396–407

    Article  CAS  Google Scholar 

  6. Hu Q, Zhou J, Qiu B, Wang Q, Song G, Guo Z (2021) Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Mater 4(2):265–273

    Article  CAS  Google Scholar 

  7. Xie X, Zhang B, Wang Q, Zhao X, Wu D, Wu H, Sun X, Hou C, Yang X, Yu R, Zhang S, Murugadoss V, Du W (2021) Efficient microwave absorber and supercapacitors derived from puffed-rice-based biomass carbon: effects of activating temperature. J Colloid Interface Sci 594:290–303

    Article  CAS  Google Scholar 

  8. Jain B, Singh AK, Hashmi A, Susan M, Lellouche JP (2020) Surfactant-assisted cerium oxide and its catalytic activity towards Fenton process for non-degradable dye. Adv Compos Hybrid Mater 3(3):430–441

    Article  CAS  Google Scholar 

  9. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Nithesh N, Guo Z (2021) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  10. Kordjazi S, Kamyab K, Hemmatinejad N (2020) Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel: an efficient water/oil separation filter. Adv Compos Hybrid Mater 3(2):167–176

    Article  CAS  Google Scholar 

  11. Guo J. Li X, Liu H, Young d P, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:51–64

  12. Fan T, Deng W, Gang Y, Du Z, Li Y (2021) Degradation of hazardous organics via cathodic flow-through process using a spinel FeCo2O4/CNT decorated stainless-steel mesh. ES Mater Manuf 12:53–62. https://doi.org/10.30919/esmm5f417

    Article  CAS  Google Scholar 

  13. Lin C, Liu B, Pu L, Sun Y, Xue Y, Chang M, Li X, Lu X, Chen R, Zhang J (2021) Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Adv Compos Hybrid Mater 4(2):339–349

    Article  CAS  Google Scholar 

  14. Yuan H, Peng H, Guan J, Liu Y, Dai J, Su R, Guo Z, Chen Y, Hu Q, Yuan B, Wu H, Kilula D, Seok I (2020) Photodegradation of gaseous toluene by vacuum ultraviolet light: performance and mechanism. Eng Sci 9:68–76. https://doi.org/10.30919/es8d910

    Article  CAS  Google Scholar 

  15. Singh N, Jana S, Singh GP, Dey RK (2020) Graphene-supported TiO2: study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation. Adv Compos Hybrid Mater 3(1):127–140

    Article  CAS  Google Scholar 

  16. Vairale P, Sharma V, Bade B, Waghmare A, Shinde P, Punde A, Doiphode V, Aher R, Pandharkar S, Nair S, Jadkar V, Shelke P, Prasad M, Jadkar S (2020) Melanin sensitized nanostructured ZnO photoanodes for efficient photoelectrochemical splitting of water: Synthesis and characterization. Eng Sci 11:76–84. https://doi.org/10.30919/es8d0023

    Article  CAS  Google Scholar 

  17. Wang Y, Xie W, Liu H, Gu H (2020) Hyperelastic magnetic reduced graphene oxide three-dimensional framework with superb oil and organic solvent adsorption capability. Adv Compos Hybrid Mater 3(4):473–484

    Article  CAS  Google Scholar 

  18. Yin C, Wang C, Hu Q (2021) Selective removal of As(V) from wastewater with high efficiency by glycine-modified Fe/Zn-layered double hydroxides. Adv Compos Hybrid Mater 4(2):360–370

    Article  CAS  Google Scholar 

  19. Yuan B, Li L, Murugadoss V, Vupputuri S, Wang J, Alikhani N, Guo Z (2020) Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation. ES Food Agrofor 1:41–52. https://doi.org/10.30919/esfaf0004

    Article  Google Scholar 

  20. Wu N, Bai X, Pan D, Dong B, Wei R, Naik N, Patil RR, Guo Z (2020) Recent advances of asymmetric supercapacitors. Adv Mater Interfaces 8(1):2001710

    Article  CAS  Google Scholar 

  21. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimur H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  22. Du W, Wang X, Zhan J, Sun X, Kang L, Jiang F, Zhang X, Shao Q, Dong M, Liu H, Murugadoss V, Guo Z (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915

    Article  CAS  Google Scholar 

  23. Jain B, Hashmi A, Sanwaria S, Singh AK, Susan MABH, Singh A (2020) Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv Compos Hybrid Mater 3(2):231–242

    Article  CAS  Google Scholar 

  24. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30. https://doi.org/10.30919/es8d1128

    Article  CAS  Google Scholar 

  25. Hou C, Hou Y, Fan Y, Zhai Y, Wang Y, Sun Z, Fan R, Dang F, Wang J (2018) Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. J Mater Chem A 6(16):6967–6976

    Article  CAS  Google Scholar 

  26. Fukumoto LR, Mazza G, Agric J (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48:3597–3604

    Article  CAS  Google Scholar 

  27. Letelier ME, Rodríguez-Rojas C, Sánchez-Jofré S, Aracena-Parks P (2011) Surfactant and antioxidant properties of an extract from Chenopodium quinoa Willd seed coats. J Cereal Sci 53:239–243

    Article  CAS  Google Scholar 

  28. Wang W, Han H, Yuan M, Li H, Fang F, Wang K (2011) Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal. Bioresour Technol 102:5454–5460

    Article  CAS  Google Scholar 

  29. Huang C, Wang M (2016) Propargyl resin derived from biosynthesized oligophenols for the application of high temperature composite matrix. Can J Chem Eng 94:41–45

    Article  CAS  Google Scholar 

  30. Liang J, Fang X, Lin Y, Wang D (2018) A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification. J Hazard Mater 347:341–348

    Article  CAS  Google Scholar 

  31. Eberlin MN, Silva R (2008) Faster and simpler determination of chlorophenols in water by fiber introduction mass spectrometry. Anal Chim Acta 620:97–102

    Article  CAS  Google Scholar 

  32. Chen JK, Lin CT, Lee HT (2015) Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels. Appl Surf Sci 330:1–9

    Article  CAS  Google Scholar 

  33. Xie S, Li M, Liao Y, Qin Q, Sun S, Tan Y (2021) In-situ preparation of biochar-loaded particle electrode and its application in the electrochemical degradation of 4-chlorophenol in wastewater-ScienceDirect. Chemosphere 273:128506

  34. Michaiowicz J, Duda W (2007) Phenols-sources and toxicity. Pol J Environ Stud 16:347–362

    Google Scholar 

  35. Chand R, Shiraishi F (2013) Reaction mechanism of photocatalytic decomposition of 2,4-dinitrophenol in aqueous suspension of TiO2 fine particlesChem. Eng J 233:369–376

    CAS  Google Scholar 

  36. Ma J, Zhang LZ, Wang YH, Lei SL, Luo XB, Chen SH, Zeng GS, Zou JP, Luo SL, Au CT (2014) Mechanism of 2,4-dinitrophenol photocatalytic degradation by ζ-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chem Eng J 251:371–380

    Article  CAS  Google Scholar 

  37. Dimitrova Y, Daskalova LI (2005) Theoretical study of structures and stability of the hydrogen-bonded complexes between 2-hydroxybenzonitrile (o-cyanophenol) and CO. J Mol Struct Theochem 756:73–78

    Article  CAS  Google Scholar 

  38. Jesila JA, Umesh NM, Wang SF, Mani G, Alshgari RA (2021) An electrochemical sensing of phenolic derivative 4-cyanophenol in environmental water using a facile-constructed Aurivillius-structured Bi2 MoO6. Ecotoxicol Environ Saf 208:111701

  39. Ran G, Li Q (2019) Removal of refractory organics in dinitrodiazophenol industrial wastewater by an ultraviolet-coupled Fenton process. RSC Adv 9:25414–25422

    Article  CAS  Google Scholar 

  40. Crawford J, Faroon O, Llados F, Wilson JD, Environ (2008) Toxicological profile for phenol Toxicological profile for phenol. 191–220

  41. Hays MD, Fine PM, Geron CD, Kleeman MJ, Gullett BK (2005) Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmospheric Environ 39:6747–6764

    Article  CAS  Google Scholar 

  42. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19:67–106

    Article  CAS  Google Scholar 

  43. Chakrabarty RK, Gyawali M, Yatavelli R, Pandey A, Watts AC, Knue J, Chen L, Pattison RR, Tsibart A, Samburova V (2016) Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing. Atmos Chem Phys 16:3033–3040

    Article  CAS  Google Scholar 

  44. Chen Y, Ge X, Chen H, Xie X, Chen Y, Wang J, Ye Z, Bao M, Zhang Y, Chen M (2018) Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing, China. Atmospheric Environ 187:230–240

    Article  CAS  Google Scholar 

  45. Teich M, Pinxteren DV, Wang M, Kecorius S, Wang Z, Müller T, Mocnik G, Herrmann H (2017) Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmos Chem Phys 17:1653–1672

    Article  CAS  Google Scholar 

  46. Severi G (2006) Circulating steroid hormones and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15:86–91

    Article  CAS  Google Scholar 

  47. Hansch C, Mckarns SC, Smith CJ, Doolittle DJ (2000) Comparative QSAR evidence for a free-radical mechanism of phenol-induced toxicity. Chem Biol Interact 127:61–72

    Article  CAS  Google Scholar 

  48. Paisio CE, Agostini E, Gonzalez PS, Bertuzzi ML, Hazard J (2009) Lethal and teratogenic effects of phenol on Bufo arenarum embryos. Mater 167:64–68

    CAS  Google Scholar 

  49. Tyler CR, Jobling S, Sumpter JP (1998) Endocrine disruption in wildlife: a critical review of the evidence. Crc Crit Rev Toxicol 28:319–361

    Article  CAS  Google Scholar 

  50. Strikwold M, Spenkelink B, Woutersen RA, Rietjens I, Punt A (2013) Combining in vitro embryotoxicity data with physiologically based kinetic (PBK) modelling to define in vivo dose-response curves for developmental toxicity of phenol in rat and human. Arch Toxicol 87:1709–1723

    Article  CAS  Google Scholar 

  51. Gao H, Yang BJ, Li N, Feng LM, Shi XY (2015) Bisphenol A and hormone-associated cancers: current progress and perspectives. Medicine 94:211

    Article  CAS  Google Scholar 

  52. Li Z, Zhang W, Shan B (2019) The effects of urbanization and rainfall on the distribution of, and risks from, phenolic environmental estrogens in river sediment. Environ Pollut 250:1010–1018

    Article  CAS  Google Scholar 

  53. Zhang Y, Liang M, Cai L, Yi L, Li J (2017) Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials. Ultrason Sonochem 36:88–94

    Article  CAS  Google Scholar 

  54. Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Karri RR (2019) Magnetic palm kernel biochar potential route for phenol removal from wastewater. Environ Sci Pollut Res 26:35183–35197

    Article  CAS  Google Scholar 

  55. Gupta VK, Nayak A, Agarwal S, Tyagi I (2014) Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J Colloid Interface Sci 417:420–430

    Article  CAS  Google Scholar 

  56. Zhao C, Zhou J, Yan Y, Yang L, Zheng H (2020) Application of coagulation/flocculation in oily wastewater treatment: a review. Sci Total Environ 765:142795

  57. Hassan K-M, Colani T, Fakude N, Mabuba GM, Peleyeju, (2019) The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor - ScienceDirect. J Colloid Interface Sci 554:603–610

    Article  CAS  Google Scholar 

  58. Top S, Akgün M, Kpak E, Bilgili MS (2020) Treatment of hospital wastewater by supercritical water oxidation process. Water Res 185:11627923

    Article  CAS  Google Scholar 

  59. Zheng G, Bao Y, Wang Y, Ma C, Chen T (2021) Fate and biodegradation characteristics of triclocarban in wastewater treatment plants and sewage sludge composting processes and risk assessment after entering the ecological environment. J Hazard Mater 412:125270

  60. Janet JG, Ponnusamy SK, Muthusamy G, Tsopbou NP, Femina CC (2021) Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of rhodamine B from aqueous systems. Environ Pollut 269:116173

  61. Saravanan A, Kumar PS, Varjani S, Jeevanantham S, George CS (2021) A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere 271:129540

  62. Fenton H, Chem J (1894) Oxidation of tartaric acid in presence of iron. Soc Trans 65:899–910

    CAS  Google Scholar 

  63. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London 147:332–351

    CAS  Google Scholar 

  64. Hargrave KR (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Trans Faraday Soc 47:591–616

    Article  Google Scholar 

  65. Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335–352

    Article  CAS  Google Scholar 

  66. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a Review. Int J Mol Sci 9:1621–1651

    Article  CAS  Google Scholar 

  67. Rogak S, Branion R, Supercrit J (2004) Supercritical water oxidation of phenol and 2,4-dinitrophenol. Fluids 30:71–87

    Google Scholar 

  68. Alnaizy R, Akgerman A (2000) Advanced oxidation of phenolic compounds. Adv Environ Res 4:233–244

    Article  Google Scholar 

  69. Utsumi H, Han YH, Ichikawa K (2003) A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation. Water Res 37:4924–4928

    Article  CAS  Google Scholar 

  70. Du Y, Zhou M, Lei L (2007) Kinetic model of 4-CP degradation by Fenton/O2 system. Water Res 41:1121–1133

    Article  CAS  Google Scholar 

  71. Primo O, Rivero MJ, Ortiz I, Hazard J (2008) Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Mater 153:834–842

    CAS  Google Scholar 

  72. Martínez-Huitle C, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145

    Article  CAS  Google Scholar 

  73. Xiao R, Diaz-Rivera D, Weavers LK (2013) Factors influencing pharmaceutical and personal care product degradation in aqueous solution using pulsed wave ultrasound. Ind Eng Chem Res 52:2824–2831

    Article  CAS  Google Scholar 

  74. Luis AD, Lombraña J, Menéndez A (2016) Characterization of the radical oxidative level in the degradation of phenolic compounds with H2O2/UV. J Adv Oxid Technol 11:21–32

    Google Scholar 

  75. Kong X, Wu Z, Ren Z, Guo K, Hou S, Hua Z, Li X, Fang J (2018) Degradation of lipid regulators by the UV/chlorine process: radical mechanisms, chlorine oxide radical (ClO)-mediated transformation pathways and toxicity changes. Water Res 137:242–250

    Article  CAS  Google Scholar 

  76. Guo K, Zheng S, Zhang X, Zhao L, Fang J (2020) Roles of bromine radicals and hydroxyl radicals in the degradation of micropollutants by the UV/bromine process. Environ Sci Technol 54:6415–6426

    Article  CAS  Google Scholar 

  77. AkinK IAA, Tugba OH, Miray B (2012) Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: oxidation products and toxicity evolution. J Photoch Photobio A: Chem 230:65–73

    Article  CAS  Google Scholar 

  78. Olmez-Hanci T, Arslan-Alaton I (2013) Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem Eng J 224:10–16

    Article  CAS  Google Scholar 

  79. Hurtado L, Deysi AP, Gabriela RM, Ever PR, Eduardo M, Reyna N (2016) Comparison of AOPs efficiencies on phenolic compounds degradation. J Chem 2016. https://doi.org/10.1155/2016/4108587

  80. Li J, Yi R, Ji F, Bo L (2017) Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chem Eng J 324:63–73

    Article  CAS  Google Scholar 

  81. He X, Chi H, He M, Zhang B, Ma J (2020) Efficient removal of halogenated phenols by vacuum-UV system through combined photolysis and OH oxidation: efficiency, mechanism and economic analysis. J Hazard Mater 403:123286

  82. Chen J, Gao N, Lu X, Xia M, Gu Z, Jiang C, Wang Q (2016) Degradation of 2,4-dichlorophenol from aqueous using UV activated persulfate: kinetic and toxicity investigation. RSC Adv 6:100056–100062

    Article  CAS  Google Scholar 

  83. Pujol AA, León I, Cárdenas J, Sepúlveda-Guzmán S, Manríquez J, Sirés I, Bustos E (2020) Degradation of phenols by heterogeneous electro-Fenton with a Fe3O4-chitosan composite and a boron-doped diamond anode. Electrochim Acta 337:135784

  84. Mei Q, Sun J, Han D, Wei B, An Z, Wang X, Xie J, Zhan J, He M (2019) Sulfate and hydroxyl radicals-initiated degradation reaction on phenolic contaminants in the aqueous phase: mechanisms, kinetics and toxicity assessment. Chem Eng J 373:668–676

    Article  CAS  Google Scholar 

  85. Mei Q, Cao H, Han D, Li M, He M (2019) Theoretical insight into the degradation of p-nitrophenol by OH radicals synergized with other active oxidants in aqueous solution. J Hazard Mater 389:121901

  86. Mei Q, Wei F, Han D, An Z, Sun J, Li M, Wei B, Xie J, He M (2021) Degradation mechanisms, kinetics and eco-toxicity assessment of 2,4-dinitrophenol by oxygen-containing free radicals in aqueous solution. Mol Phys 119(9):188636551

    Article  CAS  Google Scholar 

  87. Li C, Wei G, Chen J, Zhao Y, Zhang YN, Su L, Qin W (2018) Aqueous OH radical reaction rate constants for organophosphorus flame retardants and plasticizers: experimental and modeling studies. Environ Sci Technol 52:2790–2799

    Article  CAS  Google Scholar 

  88. Cohen AJ, Mori-Sánchez P, Yang W (2011) Challenges for density functional theory. Chem Rev 112:289–320

    Article  CAS  Google Scholar 

  89. Xie HB, Li C, He N, Wang C, Zhang S, Chen J (2014) Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study. Environ Sci Technol 48:1700–1706

    Article  CAS  Google Scholar 

  90. Alvarez-Idaboy JR, Reyes L, Mora-Diez N (2007) The mechanism of the Baeyer-Villiger rearrangement: quantum chemistry and TST study supported by experimental kinetic data. Org Biomol Chem 5:3682–3689

    Article  CAS  Google Scholar 

  91. Olariu RI, Klotz B, Barnes I, Becker KH, Mocanu R (2002) FT-IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m-, and p-cresol. Atmospheric Environ 36:3685–3697

    Article  CAS  Google Scholar 

  92. Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ Sci Technol 34:3474–3479

    Article  CAS  Google Scholar 

  93. Atkinson R, Aschmann SM (1990) Rate constants for the gas-phase reactions of the OH radical with the cresols and dimethylphenols at 296±2K. Int J Chem Kinet 22:59–67

    Article  CAS  Google Scholar 

  94. Lin YT, Liang C, Chen JH (2011) Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82:1168–1172

    Article  CAS  Google Scholar 

  95. De AK, Chaudhuri B, Bhattacharjee S, Dutta BK (1999) Estimation of OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2 photo-oxidation. J Hazard Mater 64:91–104

    Article  CAS  Google Scholar 

  96. Ziajka JJ, Rudzinski K (2007) Autoxidation of SIV inhibited by chlorophenols reacting with sulfate radicals. Environ Chem 4:355–363

    Article  CAS  Google Scholar 

  97. Albinet A, Minero C, Vione D (2010) Phototransformation processes of 2,4-dinitrophenol, relevant to atmospheric water droplets. Chemosphere 80:753–758

    Article  CAS  Google Scholar 

  98. Solar FS (1999) Comparative study on the radiolytic degradation of 4-hydroxybenzoate and 4-hydroxybenzoic ethyl ester. Radiat Phys Chem 56:291–301

    Article  Google Scholar 

  99. An Z, Sun J, Han D, Mei Q, Wei B, Wang X, He M (2019) Theoretical study on the mechanisms, kinetics and ecotoxicity assessment of OH-initiated reactions of guaiacol in atmosphere and wastewater. Sci Total Environ 685:729–740

    Article  CAS  Google Scholar 

  100. An ZX, Han DD, Sun JF, Mei Q, Wei B, Li MX, Qiu ZX, Bo XF, Wang XY, Xie J, Zhan JH, He MX (2021) Full insights into the roles of pH on hydroxylation of aromatic acids/bases and toxicity evaluation. Water Res 190:116689

    Article  CAS  Google Scholar 

  101. Calvert J, Mellouki A, Orlando J (2011) Mechanisms of atmospheric oxidation of the oxygenates. OUP USA

  102. Hennigan CJ, Miracolo MA, Engelhart GJ, May AA, Presto AA, Lee T, Sullivan AP, McMeeking GR, Coe H, Wold CE, Hao WM, Gilman JB, Kuster WC, de Gouw J, Schichtel BA, Collett JL Jr, Kreidenweis SM, Robinson AL (2011) Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos Chem Phys 15:7669–7686

    Article  CAS  Google Scholar 

  103. Ofner J, Krüger H, Grothe H, Schmitt-Kopplin P, Zetzsch C (2010) Physico-chemical characterization of secondary organic aerosol derived from catechol and guaiacol as a model substance for atmospheric humic-like substances. Atmos Chem Phys 10:17369–17405

    Google Scholar 

  104. Prinn RG, Weiss RF, Miller BR, Huang J (1995) Atmospheric trends and lifetime of CH3CCl3 and global OH concerns. Science 269:187–192

    Article  CAS  Google Scholar 

  105. Perry RA, Atkinson R, Pitts JN (1977) Kinetics and mechanism of the gas phase reaction of OH radicals with methoxybenzene and o-cresol over the temperature range 299–435 K. J Phys Chem 81:1607–1611

    Article  CAS  Google Scholar 

  106. Coeur-Tourneur C, Cassez A, Wenger JC (2010) Rate coefficients for the gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (Guaiacol) and related compounds. J Phys Chem A 114:11645–11650

    Article  CAS  Google Scholar 

  107. Olariu RI, Barnes I, Becker KH, Klotz B (2000) Rate coefficients for the gas-phase reaction of OH radicals with selected dihydroxybenzenes and benzoquinones. Int J Chemi Kinet 32:696–702

    Article  CAS  Google Scholar 

  108. Lauraguais A, Bejan I, Barnes I, Wiesen P, Coeur C (2015) Rate coefficients for the gas-phase reactions of hydroxyl radicals with a series of methoxylated aromatic compounds. J Phys Chem A 119:6179–6187

    Article  CAS  Google Scholar 

  109. Karagulian F, Rossi MJ (2005) The heterogeneous chemical kinetics of NO3 on atmospheric mineral dust surrogates. Phys Chem Chem Phys 7:3150–3162

    Article  CAS  Google Scholar 

  110. Kwok Eric SC, Atkinson R, Arey J (1994) Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with aromatic compounds. Int J Chem Kinet 26:511–525

    Article  Google Scholar 

  111. Platt UF, Winer AM, Biermann HW, Atkinson R, Pitts JN (1984) Measurement of nitrate radical concentrations in continental air. Environ Sci Technol 18:365

    Article  CAS  Google Scholar 

  112. Atkinson R, P.L. Carter W, N. Plum C, M. Winer A, N. Pitts Jr J, (1984) Kinetics of the gas-phase reactions of NO3 radicals with a series of aromatics at 296±2 K. Int J Chem Kinet 16:887–898

    Article  CAS  Google Scholar 

  113. Olariu RI, Bejan I, Barnes I, Klotz B, Becker KH, Wirtz K (2004) Rate coefficients for the gas-phase reaction of NO3 radicals with selected dihydroxybenzenes. Int J Chem Kinet 36:577–583

    Article  CAS  Google Scholar 

  114. Yang B, Zhang H, Wang Y, Zhang P, Shu J, Sun W, Ma P (2016) Experimental and theoretical studies on gas-phase reactions of NO3 radicals with three methoxyphenols: guaiacol, creosol, and syringol. Atmospheric Environ 125:243–251

    Article  CAS  Google Scholar 

  115. Lauraguais A, Zein AEl, Coeur C, Obeid E, Cassez A, Rayez MT, Rayez JC, (2016) Kinetic study of the gas-phase reactions of nitrate radicals with methoxyphenol compounds. J Phys Chem A 120:2691–2699

    Article  CAS  Google Scholar 

  116. Rudolph J, Koppmann R, Plass-Dülmer C (1996) The budgets of ethane and tetrachloroethene: is there evidence for an impact of reactions with chlorine atoms in the troposphere?. Atmospheric Environ 30:1887–1894

    Article  CAS  Google Scholar 

  117. Singh HB, Thakur AN, Chen YE, Kanakidou M (2013) Tetrachloroethylene as an indicator of low Cl atom concentrations in the troposphere. Geophys Res Lett 23:1529–1532

    Article  Google Scholar 

  118. Finlayson-Pitts BJ, Keoshian CJ, Buehler B, Ezell AA (1999) Kinetics of reaction of chlorine atoms with some biogenic organics. Dep Energy 31:491–499

    CAS  Google Scholar 

  119. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Ast JDF, Berkowitz CM (1998) Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 394:353–356

    Article  CAS  Google Scholar 

  120. Lauraguais A, Bejan I, Barnes I, Wiesen P, Coeur-Tourneur C, Cassez A (2014) Rate coefficients for the gas-phase reaction of chlorine atoms with a series of methoxylated aromatic compounds. J Phys Chem A 118:1777–1784

    Article  CAS  Google Scholar 

  121. Tomas A, Olariu RI, Barnes I, Becker KH (2003) Kinetics of the reaction of O3 with selected benzenediols. Int J Chem Kinet 35:223–230

    Article  CAS  Google Scholar 

  122. Zein AE, Coeur C, Obeid E, Lauraguais A, Fagniez T (2015) Fagniez, reaction kinetics of catechol (1,2-benzenediol) and guaiacol (2-methoxyphenol) with ozone. J Phys Chem A 119:6759–6765

    Article  CAS  Google Scholar 

  123. Volkamer R, Klotz B, Barnes I, Imamura T, Platt U (2002) OH-initiated oxidation of benzene. Part I. Phenol formation under atmospheric conditions. Phys Chem Chem Phys 4:1598–1610

    Article  CAS  Google Scholar 

  124. Atkinson R, Carter W (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem Rev 84:437–470

    Article  CAS  Google Scholar 

  125. Hester R, Harrison RM, Atkinson R (1995) Gas phase tropospheric chemistry of organic compounds. Volatile Org Compd Atmos 65–90

  126. Wei B, Sun J, Mei Q, An Z, Wang X, He M (2018) Theoretical study on gas-phase reactions of nitrate radicals with methoxyphenols. Environ Pollut 243:1772–1780

    Article  CAS  Google Scholar 

  127. Wei B, Sun J, Mei Q, He M (2018) Mechanism and kinetic of nitrate radical-initiated atmospheric reactions of guaiacol (2-methoxyphenol). Comput Theor Chem 1129:1–883

    Article  CAS  Google Scholar 

  128. Zhang H, Yang B, Wang Y, Shu J, Zhang P, Ma P, Li Z (2016) Gas-phase reactions of methoxyphenols with NO3 radicals: kinetics, products, and mechanisms. J Phys Chem A 120:1213–1221

    Article  CAS  Google Scholar 

  129. Atkinson R, Arey J (1994) Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons. Environ Health Perspect 102:117–126

    CAS  Google Scholar 

  130. Sun J, Cao H, Zhang S, Li X, He M (2016) Theoretical study on the mechanism of the gas phase reaction of methoxybenzene with ozone. Rsc Adv 6:113561–113569

    Article  CAS  Google Scholar 

  131. Sun J, Mei Q, Wei B, Huan L, Xie J, He M (2018) Mechanisms for ozone-initiated removal of biomass burning products from the atmosphere. Environ Chem 15:83–91

    Article  CAS  Google Scholar 

  132. Sun J, Wei B, Mei Q, An Z, Wang X, He M (2019) Ozonation of 3-methylcatechol and 4-methylcatechol in the atmosphere and aqueous particles. Chem Eng J 358:456–466

    Article  CAS  Google Scholar 

  133. Sun J, Han D, Shallcross DE, Cao H, Wei B, Mei Q, Xie J, Zhan J, He M (2021) Theoretical studies on the heterogeneous ozonolysis of syringol on graphene. Chem Eng J 404:126484

  134. Logan J, Geophys JA (1985) Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence. Res Atmos 90:10463–10482

    Article  Google Scholar 

Download references

Funding

This work was supported by the research program of Top Talent Project of Yantai University (1115/2220001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maoxia He, Wei Du or Chuanxin Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Mu, Q., Kimura, H. et al. Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater 5, 627–640 (2022). https://doi.org/10.1007/s42114-022-00435-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00435-0

Keywords

Navigation