Skip to main content
Log in

Synthesis of GO/HEMA, GO/HEMA/TiO2, and GO/Fe3O4/HEMA as novel nanocomposites and their dye removal ability

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In the present study, the adsorption removal of anionic (MO) and cationic (MB) dyes with GO/HEMA and GO/HEMA/TiO2 and GO/Fe3O4/HEMA nanocomposites as adsorbents was investigated. Characterization of properties was determined by FTIR, XRD, SEM, TEM, EDX, and zeta potential analysis. Parameters affecting the removal of pollutants including dye concentration (0.7 mg/l), contact time (60 min), and temperature (298 °K) were investigated. Pollutants removal mechanisms were studied with pseudo-first-order, pseudo-second-order kinetic models as well as Freundlich Langmuir isotherms. Pollutant removal for all three composites was confirmed by the Freundlich isotherm (R2 = 0.99) and first-order kinetics (R2 = 0.98).

Graphical abstract

Synthesis of nanocomposite as an adsorbent for dye removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. He C, Shi ZQ, Ma L, Cheng C, Nie CX, Zhou M, Zhao CS (2015) Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications. J Mater Chem B 3:592–602. https://doi.org/10.1039/c4tb01806k

    Article  CAS  Google Scholar 

  2. Benkhaya S, M’rabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun 115:107891. https://doi.org/10.1016/j.inoche.2020.107891

    Article  CAS  Google Scholar 

  3. Panda J, Sahoo JK, Panda PK, Sahu SN, Samal M, Pattanayak SK, Sahu R (2019) Adsorptive behavior of zeolitic imidazolate framework-8 towards anionic dye in aqueous media: combined experimental and molecular docking study. J Mol Liq 278:536–545. https://doi.org/10.1016/j.molliq.2019.01.033

    Article  CAS  Google Scholar 

  4. Hasanzadeh M, Simchi A, Far HS (2019) Kinetics and adsorptive study of organic dye removal using water-stable nanoscale metal organic frameworks. Mater Chem Phys 233:267–275. https://doi.org/10.1016/j.matchemphys.2019.05.050

    Article  CAS  Google Scholar 

  5. Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M (2018) Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J Am Chem Soc 140:1812–1823. https://doi.org/10.1021/jacs.7b11589

    Article  CAS  Google Scholar 

  6. Benkhaya S, M’rabet S, El Harfi A (2020) Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e03271

  7. Aksu Z, Çaǧatay ŞŞ (2006) Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous systems. Sep Purif Technol 48:24–35. https://doi.org/10.1016/j.seppur.2005.07.017

    Article  CAS  Google Scholar 

  8. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dye Pigment 77:16–23. https://doi.org/10.1016/j.dyepig.2007.03.001

    Article  CAS  Google Scholar 

  9. Wang C, Liu X, Keser Demir N, Chen JP, Li K (2016) Applications of water stable metal-organic frameworks. Chem Soc Rev 45:5107–5134. https://doi.org/10.1039/c6cs00362a

    Article  CAS  Google Scholar 

  10. Zhixing Yu, Bai Yu, Wang JH, Li Y (2021) Effects of functional additives on structure and properties of polycarbonate-based composites filled with hybrid chopped carbon fiber/graphene nanoplatelet fillers. ES Energy & Environment 12:66–76

    Google Scholar 

  11. Jain B, Singh AK, Hashmi A et al (2020) Surfactant-assisted cerium oxide and its catalytic activity towards Fenton process for non-degradable dye. Adv Compos Hybrid Mater 3:430–441

    Article  CAS  Google Scholar 

  12. Wu JS, Liu CH, Chu KH, Suen SY (2008) Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J Memb Sci 309:239–245. https://doi.org/10.1016/j.memsci.2007.10.035

    Article  CAS  Google Scholar 

  13. Lau YY, Wong YS, Teng TT, Morad N, Rafatullah M, Ong SA (2015) Degradation of cationic and anionic dyes in coagulation-flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Adv 5:34206–34215. https://doi.org/10.1039/c5ra01346a

    Article  CAS  Google Scholar 

  14. Kim IC, Lee KH (2006) Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes. Desalination 192:246–251

  15. Lin C, Liu B, Pu L et al (2021) Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Adv Compos Hybrid Mater 4:339–349

    Article  CAS  Google Scholar 

  16. Cheng W, Wang Y, Ge S et al (2021) One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Adv Compos Hybrid Mater 4:150–161

    Article  CAS  Google Scholar 

  17. Tavassoli N, Ansari R, Mosayebzadeh Z (2017) Synthesis and application of iron oxide/silica gel nanocomposite for removal of sulfur dyes from aqueous solutions. Arch Hyg Sci 6:214–220. https://doi.org/10.29252/archhygsci.6.2.214

    Article  CAS  Google Scholar 

  18. Cao W, Han M, Qin L et al (2019) Synthesis of zeolitic imidazolate framework-67 nanocube wrapped by graphene oxide and its application for supercapacitors. J Solid State Electrochem 23:325–334. https://doi.org/10.1007/s10008-018-4138-1

    Article  CAS  Google Scholar 

  19. Yuan B, Li L, Murugadoss V, Vupputuri S, Wang J, Alikhani N, Guo Z (2020) Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation. ES Food & Agroforestry 1:41–52

    Google Scholar 

  20. Liu H, Mao Y (2021) Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Materials and Manufacturing 13:3–22

    CAS  Google Scholar 

  21. Prashant MK, Avinash R, Kachere N, Mandlik T, Rondiya SR, Jadkar SR, Shivaji V, Bhosale, (2021) Graphene oxide assisted synthesis of magnesium oxide nanorods. ES Materials and Manufacturing 12:63–71

    Google Scholar 

  22. Nidamanuri N, Li Y, Li Q, Dong M (2020) Graphene and graphene oxide-based membranes for gas separation. Engineered Science 9:3–16

    CAS  Google Scholar 

  23. Cai J, Tian J, Hongbo Gu, Guo Z (2019) Amino carbon nanotube modified reduced graphene oxide aerogel for oil/water separation. ES Materials & Manufacturing 6:68–74

    Google Scholar 

  24. Singh N, Jana S, Singh GP et al (2020) Graphene-supported TiO2: study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation. Adv Compos Hybrid Mater 3:127–140

    Article  CAS  Google Scholar 

  25. Cheng C, Liu Z, Li X, Su B, Zhou T, Zhao C (2014) Graphene oxide interpenetrated polymeric composite hydrogels as highly effective adsorbents for water treatment. RSC Adv 4:42346–42357. https://doi.org/10.1039/c4ra07114j

  26. Adsorptive removal of toxic dye using Fe3O4−TSC nanocomposite.pdf, (n.d.)

  27. Vasile E, Pandele AM, Andronescu C, Selaru A, Dinescu S, Costache M, Hanganu A, Raicopol MD, Teodorescu M (2019) Hema-functionalized graphene oxide: a versatile nanofiller for poly(propylene fumarate)-based hybrid materials. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-55081-2

    Article  CAS  Google Scholar 

  28. Kim SP, Choi HC (2014) Photocatalytic degradation of methylene blue in presence of graphene oxide/TiO2 nanocomposites. Bull Korean Chem Soc 35:2660–2664. https://doi.org/10.5012/bkcs.2014.35.9.2660

    Article  CAS  Google Scholar 

  29. Mohammad AKT, Abdulhameed AS, Jawad AH (2019) Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO 2 nanocomposite: methyl orange adsorption and mechanism studies. Int J Biol Macromol 129:98–109. https://doi.org/10.1016/j.ijbiomac.2019.02.025

    Article  CAS  Google Scholar 

  30. Bhowmik M, Deb K, Debnath A, Saha B (2018) Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of methyl orange dye: neural network modeling and response surface methodology optimization. Appl Organomet Chem 32:1–17. https://doi.org/10.1002/aoc.4186

    Article  CAS  Google Scholar 

  31. Su Z, Zhang M, Lu Z et al (2018) Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability. Cellulose 25:1997–2008. https://doi.org/10.1007/s10570-018-1696-4

    Article  CAS  Google Scholar 

  32. Shi H, Li W, Zhong L, Xu C (2014) Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite: equilibrium, kinetics, and thermodynamics. Ind Eng Chem Res 53:1108–1118. https://doi.org/10.1021/ie4027154

    Article  CAS  Google Scholar 

  33. Safaiee M, Zolfigol MA, Derakhshan-Panah F, Khakyzadeh V, Mohammadi L (2016) Synthesis of nano magnetite Fe3O4 based vanadic acid: a highly efficient and recyclable novel nanocatalyst for the synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ols). Croat Chem Acta 89:317–322. https://doi.org/10.5562/cca2854

    Article  CAS  Google Scholar 

  34. Cheng C, Liu Z, Li X, Su B, Zhou T, Zhao C (2014) Graphene oxide interpenetrated polymeric composite hydrogels as highly effective adsorbents for water treatment. RSC Adv 4:42346–42357. https://doi.org/10.1039/c4ra07114j

    Article  CAS  Google Scholar 

  35. He A, Lei B, Cheng C, Li S, Ma L, Sun S, Zhao C (2013) Toward safe, efficient and multifunctional 3D blood-contact adsorbents engineered by biopolymers/graphene oxide gels. RSC Adv 3:22120–22129. https://doi.org/10.1039/c3ra44775h

    Article  CAS  Google Scholar 

  36. Zhao S, Wang H (2020) An integrated H-type method to measure thermoelectric properties of two-dimensional Materials 9:59–66

    CAS  Google Scholar 

  37. Ryu H, Roshan R, Kim MI et al (2017) Cycloaddition of carbon dioxide with propylene oxide using zeolitic imidazolate framework ZIF-23 as a catalyst. Korean J Chem Eng 34:928–934. https://doi.org/10.1007/s11814-016-0339-4

    Article  CAS  Google Scholar 

  38. Yang N, Zhu S, Zhang D, Xu S (2008) Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett 62:645–647. https://doi.org/10.1016/j.matlet.2007.06.049

    Article  CAS  Google Scholar 

  39. Shi H, Li W, Zhong L, Xu C (2014) Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite: Equilibrium, kinetics, and thermodynamics. Ind Eng Chem Res 53 (2014) 1108–1118. https://doi.org/10.1021/ie4027154

  40. Yuan Y, Xu X, Xia J et al (2019) A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Microchim Acta 186:191. https://doi.org/10.1007/s00604-019-3298-8

    Article  CAS  Google Scholar 

  41. Babu MJ, Botsa SM, Rani SJ et al (2020) Enhanced photocatalytic degradation of cationic dyes under visible light irradiation by CuWO4-RGO nanocomposite. Adv Compos Hybrid Mater 3:205–212

    Article  Google Scholar 

  42. Zhao D, Gao X, Wu C, Xie R, Feng S, Chen C (2016) Facile preparation of amino functionalized graphene oxide decorated with Fe 3 O 4 nanoparticles for the adsorption of Cr(VI). Appl Surf Sci 384:1–9. https://doi.org/10.1016/j.apsusc.2016.05.022

    Article  CAS  Google Scholar 

  43. Nasrollahzadeh M, Atarod M, Jaleh B, Gandomirouzbahani M (2016) In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram Int 42:8587–8596. https://doi.org/10.1016/j.ceramint.2016.02.088

    Article  CAS  Google Scholar 

  44. Xu H, Ding M, Chen W, Li Y, Wang K (2018) Nitrogen–doped GO/TiO2 nanocomposite ultrafiltration membranes for improved photocatalytic performance. Sep Purif Technol 195:70–82. https://doi.org/10.1016/j.seppur.2017.12.003

    Article  CAS  Google Scholar 

  45. Gul S, Sohni S, Waqar M, Ahmad F, Norulaini NAN, MOAK (2016) Functionalization of magnetic chitosan with graphene oxide for removal of cationic and anionic dyes from aqueous solution. Carbohydr Polym 152:520–531. https://doi.org/10.1016/j.carbpol.2016.06.045

    Article  CAS  Google Scholar 

  46. Paredes A, Acuña SM, Gutiérrez L, Toledo PG (2019) Zeta potential of pyrite particles in concentrated solutions of monovalent seawater electrolytes and amyl xanthate. Minerals 9. https://doi.org/10.3390/min9100584

  47. Wang Y, Liang S, Chen B, Guo F, Yu S, Tang Y (2013) Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4@Mesoporous silica-graphene oxide composites. PLoS ONE 8:1–9. https://doi.org/10.1371/journal.pone.0065634

    Article  CAS  Google Scholar 

  48. Au PI, Leong YK (2013) Rheological and zeta potential behaviour of kaolin and bentonite composite slurries. Colloids Surfaces A Physicochem Eng Asp 436:530–541. https://doi.org/10.1016/j.colsurfa.2013.06.039

    Article  CAS  Google Scholar 

  49. Chen K, He J, Li Y, Cai X, Zhang K, Liu T, Hu Y, Lin D, Kong L, Liu J (2017). Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. https://doi.org/10.1016/j.jcis.2017.01.082

    Article  Google Scholar 

  50. Shojaei S, Khammarnia S, Shojaei S, Sasani M (2017) Removal of Reactive Red 198 by Nanoparticle zero valent iron in the presence of hydrogen peroxide. J Water Environ Nanotechnol 2:129–135. https://doi.org/10.22090/jwent.2017.02.008

    Article  CAS  Google Scholar 

  51. Arora C, Soni S, Sahu S, Mittal J, Kumar P, Bajpai PK (2019) Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. J Mol Liq 284:343–352. https://doi.org/10.1016/j.molliq.2019.04.012

    Article  CAS  Google Scholar 

  52. Pirsaheb M, Hossaini H, Nasseri S et al (2020) Optimization of photocatalytic degradation of methyl orange using immobilized scoria-Ni/TiO2 nanoparticles. J Nanostruct Chem 10:143–159

    Article  CAS  Google Scholar 

  53. Ali Baig A, Rathinam V, Ramya V (2021) Facile fabrication of Zn-doped SnO2 nanoparticles for enhanced photocatalytic dye degradation performance under visible light exposure. Adv Compos Hybrid Mater 4:114–126

    Article  CAS  Google Scholar 

  54. Rajabi M, Mahanpoor K, Moradi O (2019) Preparation of PMMA/GO and PMMA/GO-Fe 3 O 4 nanocomposites for malachite green dye adsorption: kinetic and thermodynamic studies. Compos Part B Eng 167:544–555. https://doi.org/10.1016/j.compositesb.2019.03.030

    Article  CAS  Google Scholar 

  55. Fathi MR, Asfaram A, Farhangi A (2015) Removal of Direct Red 23 from aqueous solution using corn stalks: isotherms, kinetics and thermodynamic studies. Spectrochim Acta - Part A Mol Biomol Spectrosc 135:364–372. https://doi.org/10.1016/j.saa.2014.07.008

    Article  CAS  Google Scholar 

  56. Kaur D, Bagga V, Behera N et al (2019) SnSe/SnO2 nanocomposites: novel material for photocatalytic degradation of industrial waste dyes. Adv Compos Hybrid Mater 2:763–776

    Article  CAS  Google Scholar 

  57. Isa EDM, Shameli K, Jusoh NWC et al (2021) Rapid photodecolorization of methyl orange and rhodamine B using zinc oxide nanoparticles mediated by pullulan at different calcination conditions. J Nanostruct Chem 11:187–202

    Article  CAS  Google Scholar 

  58. örgün N, Özer Ç, Polat K (2019) A new catalyst material from electrospun PVDF-HFP nanofibers by using magnetron-sputter coating for the treatment of dye-polluted waters. Adv Compos Hybrid Mater 2:423–430

  59. Huang KY, Wang CT, Chou WL, Shu CM (2013) Removal of polyvinyl alcohol using photoelectrochemical oxidation processes based on hydrogen peroxide electrogeneration. Int J Photoenergy 2013. https://doi.org/10.1155/2013/841762

  60. Mahvi AH, Dalvand A (2019) Kinetic and equilibrium studies on the adsorption of Direct Red 23 dye from aqueous solution using montmorillonite nanoclay. Water Qual Res J 1–13. https://doi.org/10.2166/wqrj.2019.008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Moradi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, O., Madanpisheh, M.A. & Moghaddas, M. Synthesis of GO/HEMA, GO/HEMA/TiO2, and GO/Fe3O4/HEMA as novel nanocomposites and their dye removal ability. Adv Compos Hybrid Mater 4, 1185–1204 (2021). https://doi.org/10.1007/s42114-021-00353-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00353-7

Keywords

Navigation