Skip to main content
Log in

SnSe/SnO2 nanocomposites: novel material for photocatalytic degradation of industrial waste dyes

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

SnSe-/SnO2-based in situ nanocomposites have been prepared by facile chemical co-precipitation method. These nanocomposites are vacuum-annealed at 400 °C to improve crystallinity. Structural properties of as-deposited and annealed nanocomposites were studied from X-ray diffraction (XRD). Morphological and optical properties are studied by transmission electron microscope (TEM), photoluminescence (PL) and Raman and XPS spectroscopy. The average size of nanoparticles was observed to be in two different ranges: < 10 nm of SnO2 and 30–40 nm of SnSe. PL emission spectra of nanocomposites show strong blue emission (426 nm) and green emission (512 nm) bands which highlight their potential applications in optoelectronics and colour labelling. The photocatalytic activities of the synthesized nanocomposites have been carried out on industrial waste dyes such as methylene blue and rhodamine B. The photodegradation of these dyes under the exposure of sunlight is found to be > 90% in 90 min. The possible mechanism of photodegradation of dyes by nanocomposite has been discussed. The degradation mechanism of rhodamine B dye via rate-limiting stepwise de-ethylation process is suggested. The de-ethylation intermediate products are confirmed by LC-MS measurements.

The efficient separation of photogenerated electron and holes in SnSe/SnO2 nanocomposite leads to enhancement in the formation of free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lin J, Luo Z, Liu J, Li P (2018) Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Mater Sci Semicond Process 87:24–31

    Article  CAS  Google Scholar 

  2. Li X, Xia T, Xu C, Murowchick J, Chen X (2013) Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts, Catal. Today 225:64–73

    Article  Google Scholar 

  3. Dariani RS, Esmaeili A, Mortezaali A, Dehghanpour S (2016) Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127:7143–7154

    Article  CAS  Google Scholar 

  4. Xia S, Zhang L, Pan G, Qian P, Ni Z (2015) Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways. Phys Chem Chem Phys 17:5345–5351

    Article  CAS  Google Scholar 

  5. Anas M, Han DS, Mahmoud K, Park H, Wahab AA (2016) Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition. Mater Sci Semicond Process 27:240–253

    Google Scholar 

  6. Eskandarloo H, Badiei A, Haug C (2014) Enhanced photocatalytic degradation of an azo textile dye by using TiO2/NiO coupled nanoparticles: optimization of synthesis and operational key factors. Mater Sci Semicond Process 41:209–218

    Google Scholar 

  7. Yaseen DA, Scholz M (2018) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226

    Article  Google Scholar 

  8. Wang Z, Xue M, Huang K, Liu Z (2011) Textile dyeing wastewater treatment, advances in treating textile effluent. In: Hauser P (ed). InTech. Available from: http://www.intechopen.com/books/advances-in-treating-textile-effluent/textile-dyeing-wastewatertreatment

  9. Kikuchi N, Kusano E, Kishio E, Kinbara A (2002) Electrical and mechanical properties of SnO2:Nb films for touch screens. Vacuum 66:365–371

    Article  CAS  Google Scholar 

  10. Lorenz M et al (2016) The 2016 oxide electronic materials and oxide interfaces roadmap. J Phys D Appl Phys 49:433001

    Article  Google Scholar 

  11. Guo X, Liu X, Lin F, Li H, Fan Y, Zhang N (2015) Highly conductive transparent organic electrodes with multilayer structures for rigid and flexible optoelectronics. Sci Rep 5:10569

    Article  Google Scholar 

  12. Rao TS, Chaudhuri AK (1996) Photoconductive relaxation studies of SnSe thin films. Bull Mater Sci 19:449–453

    Article  CAS  Google Scholar 

  13. Abutbula RE, Segev E, Samuhaac S, Zeiribd L, Ezersky V, Makov G, Golan Y (2016) A new nanocrystalline binary phase: synthesis and properties of cubic tin monoselenide. CrystEngComm. 18:1918–1923

    Article  Google Scholar 

  14. Nair PK, Barrios-Salgado E, Nair MTS (2016) Cubic-structured tin selenide thin film as a novel solar cell absorber, Phys. Status Solidi A 213:2229–2236

    Article  CAS  Google Scholar 

  15. Kahn ML, Cardinal T, Bousquet B, Monge M, Jubera V, Chaudret B (2006) Optical properties of zinc oxide nanoparticles and nanorods synthesized using an organometallic method. Chem Phys Chem 7:2392–2397

    Article  CAS  Google Scholar 

  16. Fu YS, Du XW, Kulinich SA, Qiu JS, Qin WJ, Li R, Sun J, Liu J (2007) Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. J Am Chem Soc 129:16029–16033

    Article  CAS  Google Scholar 

  17. Supporting Information of. Nair PK, Barrios-Salgado E, Nair MTS (2016) Cubic-structured tin selenide thin film as a novel solar cell absorber, Phys. Status Solidi A 213:2229–2236

    Article  Google Scholar 

  18. Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armanda M, Tarascon JM (2010) Structure and electrochemical properties of novel mixed Li(Fe1−xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis. J Mater Chem 20:1659–1668

    Article  CAS  Google Scholar 

  19. Guleria A, Singh AK, Rath MC, Adhikari S, Sarkar SK (2013) Islands of CdSe nanoparticles within Se nanofibers: a room temperature ionic liquid templated synthesis. Dalton Trans 42:15159–15168

    Article  CAS  Google Scholar 

  20. Liu LZ, Xu JQ, Wu XL, Li TH, Shen JC, Chu PK (2013) Optical identification of oxygen vacancy types in SnO2 nanocrystals. Appl Phys Lett 102:031916

    Article  Google Scholar 

  21. Shajira PS, Bushiri MJ, Nair BB, Prabhu VG (2014) Energy band structure investigation of blue and green light emitting Mg doped SnO2 nanostructures synthesized by combustion method. J Lumin 145:425–429

    Article  CAS  Google Scholar 

  22. Arai T, Adachi S (2013) Photoluminescence properties of SnO2·H2O phosphor. ECS JSolid State Sci and Tech 2:R172–R177

    Article  CAS  Google Scholar 

  23. Bonu V, Das A, Amirthapandian S, Dhara S, Tyagi AK (2015) Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles. Phys Chem Chem Phys 17:9794–9801

    Article  CAS  Google Scholar 

  24. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79:7983

    Article  CAS  Google Scholar 

  25. Cheng HM, Lin KF, Hsu HC, Hsieh WF (2006) Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots. Appl Phys Lett 88:261909

    Article  Google Scholar 

  26. Kaur G, Mitra A, Yadav KL (2015) Influence of beam energy on the properties of pulsed laser deposited Al-doped ZnO thin films. IEEE Trans on Nanotechnol 14:922–930

    Article  CAS  Google Scholar 

  27. Sahayaraj CAR, Mohan A, Arivazhagan V, Rajesh S (2014) Investigation of structural and optical properties of thermally evaporated SnSe thin films. Chalcogenide Lett 11:47–52

    Google Scholar 

  28. Zhang H, Feng J, Fei T, Liu S, Zhang T (2014) SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature, Sens. Actuators B 190:472–478

    Article  CAS  Google Scholar 

  29. Huang J, Liu Y, Wu Y, Li X (2017) Influence of Mn doping on the sensing properties of SnO2 nanobelt to ethanol. Am J Anal Chem 8:60–71

    Article  CAS  Google Scholar 

  30. Mukhokosi EP, Krupanidhi SB, Nanda KK (2017) Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection. Sci Rep 7:15215

  31. Riha SC, Johnson DC, Prieto AL (2011) Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. J Am Chem Soc 133:1383–1390

    Article  CAS  Google Scholar 

  32. Kharade DS, Pawar NB, Khot KV, Patil PB, Mali SS, Hong CK, Patil PS, Bhosale PN (2016) Enhanced photoelectrochemical performance of novel p-type MoBiCuSe4 thin films deposited by a simple surfactant-mediated solution route. RSC Adv 6:24985–24994

    Article  CAS  Google Scholar 

  33. Chen F, Zhao J, Hidaka H (2003) Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int J Photoenergy 5:209–217

    Article  Google Scholar 

  34. Yu K, Yang S, He H, Sun C, Gu C, Ju Y (2009) Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J Phys Chem A 113:10024–10032

    Article  CAS  Google Scholar 

  35. Joshi S, Ippolito SJ, Sunkara MV (2016) Convenient architectures of Cu2O/SnO2type II p–n heterojunctions and their application in visible light catalytic degradation of rhodamine B. RSC Adv 6:43672–43684

    Article  CAS  Google Scholar 

  36. Gautama A, Kshirsagara A, Biswas R, Banerjee S, Khanna PK (2016) Photodegradation of organic dyes based on anatase and rutile TiO2nanoparticles. RSC Adv 6:2746–2759

    Article  Google Scholar 

  37. Zhang YC, Du ZN, Li KW, Zhang M, Dionysiou DD (2011) High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles. ACS Appl Mater Interfaces 3:1528–1537

    Article  CAS  Google Scholar 

  38. Li X, Ye J (2007) Photocatalytic degradation of rhodamine B over Pb3Nb4O13/fumed SiO2 composite under visible light irradiation J. Phys Chem C 111:13109–13116

    Article  CAS  Google Scholar 

  39. Qu P, Zhao J, Shen T, Hidaka H (1998) TiO2-assisted photodegradation of dyes: a study of two competitive primary processes in the degradation of RB in an aqueous TiO colloidal solution J. Mol Catal A 129:257–268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Sujeet Chaudhary, IIT Delhi, for helping in providing vacuum annealing, Raman and XRD measurement facilities; Dr. Praveen Kumar, DAV University for PL measurements; Dr. Palwinder Singh, GNDU, Amritsar, for LC-MS measurement facility; Mr. Manmeet Singh for XPS measurements; and Dr. Gurpreet Kaur for fruitful result discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daljit Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict(s) of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 52619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Bagga, V., Behera, N. et al. SnSe/SnO2 nanocomposites: novel material for photocatalytic degradation of industrial waste dyes. Adv Compos Hybrid Mater 2, 763–776 (2019). https://doi.org/10.1007/s42114-019-00130-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00130-7

Keywords

Navigation