Skip to main content
Log in

Groundwater quality assessment using water quality index and geographic information system based in Sebou River Basin in the North-West region of Morocco

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

The assessment of groundwater quality in regions with high economic activities is crucial for sustainable water resource management. The pressures on groundwater in the Sebou river basin are many and increasingly affecting the quality and the availability of groundwater. The identification of areas with groundwater of degraded quality is important for actions to be taken to reduce the pollution. The aim of this research is to assess and spatialize, using GIS, the groundwater quality in view of delineating polluted hotspots to be controlled by water resource managers. A water quality index (WQI) developed in Morocco has been applied to 81 water-quality monitoring stations with database of five water quality parameters from 1989 to 2017. The result indicated that the overall WQI, in most parts of the basin, was classified as medium to very bad. There were only small areas that showed good to excellent water quality. Three water quality parameters (NO3, Cl and electrical conductivity (EC)) underlie the degradation of groundwater quality as these parameters have shown very high correlation coefficients with the overall water quality index and minimum relative values of their sub-indices as 0.00 (very bad) for NO3, as 0.00 (very bad) for EC and 11.7 (very bad) for Cl. Intensive agricultural activities, untreated industrial and domestic wastewater and landfills could be responsible for degradation of groundwater quality in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data

All data are available for transparency.

References

  • Abbasi, T., & Abbasi, S. A. (2012). Water quality indices. Amsterdam: Elsevier. (10.1016/B978-0-444-54304-2.00001-4).

    Google Scholar 

  • Amraoui F., (2005). Contribution à la connaissance des aquifères karstiques: cas du lias de la plaine du Sais et du causse moyen atlasique tabulaire (Maroc). Thèse de doctorat d’Etat. Université des Sciences et Techniques du Languedoc (USTL-Montpellier-France)

  • Ao, C., Yang, P., Zeng, W., Jiang, Y., Chen, H., Xing, W., et al. (2020). Development of an ammonia nitrogen transport model from surface soil to runoff via raindrop splashing. CATENA, 189, 104473. https://doi.org/10.1016/j.catena.2020.104473.

    Article  CAS  Google Scholar 

  • Brandt, M. J., Johnson, K. M., Elphinston, A. J., & Ratnayaka, D. D. (2016). Chemistry, microbiology and biology of water. Twort's water supply (7th ed., pp. 235–321). Amsterdam: Elsevier.

    Google Scholar 

  • Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index—do we dare? Water & Sew Works., 117(10), 339–343.

    Google Scholar 

  • Canadian Council of Ministers of the Environment, (2001). CCME Water Quality Index. 1.0 Technical Report. CCME, Winnipeg, MB.

  • Cantor, K. P. (1997). Drinking Water and Cancer. Cancer Causes and Control., 8, 292–308. https://doi.org/10.1023/A:1018444902486.

    Article  CAS  Google Scholar 

  • Chen, J. F. (1997). Adsorption and diffusion of ammonium in soils. In Z. Zhu, Q. Wen, & J. R. Freney (Eds.), Nitrogen in soils of China. Developments in plant and soil sciences (Vol. 74). Dordrecht: Springer.

    Google Scholar 

  • Cude, C. G. (2001). Oregon water quality index: a tool for evaluating water quality management effectiveness. Journal of the American Water Resources Association, 37(1), 125–137. https://doi.org/10.1111/j.1752-1688.2001.tb05480.x.

    Article  CAS  Google Scholar 

  • Elgettafi, M., Himi, M., Casas, A., & Elmandour, A. (2011). Hydrochemistry characterization of groundwater salinity in Kert aquifer, NE Morocco. Geographia Technica., 2, 15–22.

    Google Scholar 

  • ESRI. (1992). ARC/INFO user’s guide: cell-based modelling with GRID. Analysis, display and management, 2nd ed.

  • Essahale, A., Malki, M., Marin, I., & Moumni, M. (2010). Bacterial diversity in Fez tanneries and Morocco’s Binlamdoune River, using 16S RNA gene based fingerprinting. Journal of Environmental Sciences, 22(12), 1944–1953. https://doi.org/10.1016/S1001-0742(09)60344-2.

    Article  CAS  Google Scholar 

  • Gamar, A., Zair, T., El Kabriti, M., & El Hilali, F. (2018). Study of the impact of the wild dump leachates of the region of El Hajeb (Morocco) on the physicochemical quality of the adjacent water table. Karbala International Journal of Modern Science, 4(4), 382–392. https://doi.org/10.1016/j.kijoms.2018.10.002.

    Article  Google Scholar 

  • Gitau, M. W., Chen, J., & Ma, Z. (2016). Water Quality Indices as Tools for Decision Making and Management. Water Resources Management, 30(8), 2591–2610.

    Article  Google Scholar 

  • Hayzoun, H. (2014). Caractérisation et quantification de la charge polluante anthropique et industrielle dans le bassin du Sebou. Autre. Université de Toulon ; Université Sidi Mohamed ben Abdellah (Fès, Maroc). Faculté des Sciences et Techniques, 2014. Français. NNT : 2014TOUL0007.

  • Hayzoun, H., Garnier, C., Durrieu, G., Lenoble, V., Le Poupon, C., Angeletti, B., et al. (2015). Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco). Science of the Total Environment, 502(2015), 296–308. https://doi.org/10.1016/j.scitotenv.2014.09.014.

    Article  CAS  Google Scholar 

  • Hssaisoune, M., Bouchaou, L., Sifeddine, A., Bouimetarhan, I., & Abdelghani Chehbouni, A. (2020). Moroccan groundwater resources and evolution with global climate changes. Geoscience, 10(80), 20. https://doi.org/10.3390/geosciences10020081.

    Article  CAS  Google Scholar 

  • Kanga, I. S., Chikhaoui, M., & Naimi, M. (2019b). Water quality assessment using a new proposed water quality index: a case study from Morocco. International Journal of Environment, Agriculture and Biotechnology, 4(4), 957–792. https://doi.org/10.22161/ijeab.4411.

    Article  Google Scholar 

  • Kanga, I. S., Niandou, A. S., Naimi, M., Chikhaoui, M., Schimmel, K., & Luster-Teasley, S. (2019a). A systematic review and meta-analysis of water quality indices. JAST-B., 9(2), 1–14. https://doi.org/10.17265/2161-6264/2019.01.001.

    Article  CAS  Google Scholar 

  • Kawo, N. S., & Karuppannan, S. (2018). Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences, 147(2018), 300–311. https://doi.org/10.1016/j.jafrearsci.2018.06.034.

    Article  CAS  Google Scholar 

  • Khan, S., & Ali, J. (2018). Chemical analysis of air and water. In D. Hader & G. Erzinger (Eds.), Bioassays: advanced methods and applications (pp. 21–39). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Koukal, B., Dominika, J., Vignati, D., Arpagaus, P., Santiago, S., Ouddane, B., et al. (2004). Assessment of water quality and toxicity of polluted Rivers Fez and Sebou in the region of Fez (Morocco). Environmental Pollution, 131(2004), 163–172.

    Article  CAS  Google Scholar 

  • Morris, R. D. (1995). Drinking water and cancer. Environmental Health Perspectives, 103(suppl 8), 225–231.

    Article  Google Scholar 

  • Mukate, S., Wagh, V., Panaskar, D., Jacobs, J. A., & Sawant, A. (2019). Development of new integrated water quality index (IWQI) model to evaluate the drinking suitability of water. Ecological Engineering, 101(2019), 348–354. https://doi.org/10.1016/j.ecolind.2019.01.034.

    Article  CAS  Google Scholar 

  • Muzenda, F., Masocha, M., & Misi, S. N. (2019). Groundwater quality assessment using a water quality index and GIS: A case of Ushewokunze Settlement, Harare Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 112(2019), 134–140. https://doi.org/10.1016/j.pce.2019.02.011.

    Article  Google Scholar 

  • Nabizadeh, R., Amin, M. V., Alimohammadi, M., Naddafi, K., Mahvi, A. H., & Yousefzadeh, S. (2013). Development of innovative computer software to facilitate the setup and computation of water quality index. Journal of Environmental Health Science and Engineering, 11(1).

  • Najib, S., Fadili, A., Mehdia, K., Riss, J., Makan, A., & Guessir, H. (2016). Salinization process and coastal groundwater quality in Chaouia Morocco. Journal of African Earth Sciences., 115, 17–31. https://doi.org/10.1016/j.jafrearsci.2015.12.010.

    Article  CAS  Google Scholar 

  • Nelly, K. C., & Mutua, F. (2016). Ground water quality assessment using GIS and remote sensing: a case study of Juja location, Kenya. American Journal of Geographic Information System, 5(1), 12–23. https://doi.org/10.5923/j.ajgis.20160501.02.

    Article  Google Scholar 

  • Perrin, J. L., Raïs, N., Chahinian, N., Moulin, P., & Ijjaali, M. (2014). Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco). Journal of Hydrology, 510(2014), 26–34. https://doi.org/10.1016/j.jhydrol.2013.12.002.

    Article  CAS  Google Scholar 

  • Sadat-Noori, S. M., Ebrahimi, K., & Liaghat, A. M. (2013). Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environmental Earth Sciences, 71(2014), 3827–3843. https://doi.org/10.1007/s12665-013-2770-8.DOI10.1007/s12665-013-2770-8.

    Google Scholar 

  • Said, A., Stevens, D. K., & Sehlke, G. (2004). An innovative index for evaluating water quality in streams. Environmental Management, 34(2004), 406–414. https://doi.org/10.1007/s00267-004-0210-y.

    Article  Google Scholar 

  • Srebotnjak, T., Carr, G., Sherbinin, A. D., & Rickwood, C. (2012). A global Water Quality Index and hot-deck imputation of missing data. Ecological Engineering, 17(2012), 108–119. https://doi.org/10.1016/j.ecolind.2011.04.023.

    Article  CAS  Google Scholar 

  • Sullivan, C. (2011). Quantifying water vulnerability: a multi-dimensional approach. Stochastic Environmental Research and Risk Assessment, 25(2011), 627–640. https://doi.org/10.1007/s00477-010-0426-8.

    Article  Google Scholar 

  • Swamee, P. K., & Tyagi, A. (2007). Improved method for aggregation of water quality sub-indices. Journal of Environmental Engineering-ASCE., 133(2), 220–225. https://doi.org/10.1061/(ASCE)07339372(2007)133:2(220).

    Article  CAS  Google Scholar 

  • Tian, Y., Jiang, Y., Liu, Q., Dong, M., Xu, D., Liu, Y., et al. (2019). Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Science of the Total Environment., 667(219), 142–151. https://doi.org/10.1016/j.scitotenv.2019.02.356.

    Article  CAS  Google Scholar 

  • United Nations Educational, Scientific and Cultural Organization, (2015). International Initiative on Water Quality. https://www.waterandchange.org/wp-content/uploads/2016/11/iiwq.pdf.

  • United Nations Environment Programme, (2018). Progress on Ambient Water Quality: Piloting the monitoring methodology and initial findings for SDG 6 indicator 6.3.2. https://www.unwater.org/publications/progress-on-ambient-water-quality-632/.

  • United Nations, (2019). Leaving no one behind. https://unesdoc.unesco.org/ark:/48223/pf0000367306.

  • Wanda, E. M. M., Mamba, B. B., & Msagati, T. A. M. (2015). Determination of the water quality index ratings of water in the Mpumalanga and North West Provinces, South Africa. Physics and Chemistry of the Earth, Parts A/B/C., 92(2016), 70–78. https://doi.org/10.1016/j.pce.2015.09.009.

    Article  Google Scholar 

  • Wang, F. L., & Alva, A. K. (2000). Ammonium adsorption and desorption in sandy soils. Soil Science Society of America Journal, 64(5), 1669–1674.

    Article  CAS  Google Scholar 

  • World Health Organization, (2017). Progress on drinking water, sanitation and hygiene. https://www.who.int/water_sanitation_health/publications/jmp-2017/en/.

  • Yang, Y., Yin, X., & Yang, Z. (2016). Environmental flow management strategies based on the integration of water quantity and quality, a case study of the Baiyangdian Wetland China. Ecological Engineering., 96(2016), 150–161. https://doi.org/10.1016/j.ecoleng.2015.12.018.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all who assisted in conducting this work.

Funding

We would like to thank the staff of the Water Quality Service of the Sebou Hydraulic Basin Agency. We would like to thank the staff of the Soil and Water Conservation Laboratory-IAV Hassan II and GISEC project as well as the Hassan II Academy of Science and Technology for their multifaceted financial support.

Author information

Authors and Affiliations

Authors

Contributions

KIS conducted the research, manuscript writing. NM corrections, reading, writing. CM corrections, reading, writing.

Corresponding author

Correspondence to I. S. Kanga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanga, I.S., Naimi, M. & Chikhaoui, M. Groundwater quality assessment using water quality index and geographic information system based in Sebou River Basin in the North-West region of Morocco. Int J Energ Water Res 4, 347–355 (2020). https://doi.org/10.1007/s42108-020-00089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-020-00089-y

Keywords

Navigation