Skip to main content
Log in

Discrete Micromodulus Functions for Reducing Wave Dispersion in Linearized Peridynamics

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

Typical implementations of peridynamics use a constant or tapered micromodulus (or influence) function, the choice of which has been shown to have a large impact on the dispersion relation. In this work, a method for computing micromodulus function values at discretized points within a node’s horizon is presented for linearized peridynamics. The technique involves constructing a system of equations representing the desired dispersion relation and solving for the micromodulus function coefficients at discretized node locations. Both 1D and 2D formulations are presented. A straightforward implementation of the method results in negative coefficients, which improve wave propagation accuracy, but results in unstable solutions of fracture problems using a bond-breakage scheme. Two methods for addressing this issue are discussed: A hybrid method that uses a constant micromodulus function after damage has occurred at a node, and a constrained solution that results in only positive coefficients. The dispersion properties of the method are examined in detail, including the numerical anisotropy in 2D. Finally, results for wave propagation in 1D and 2D, static fracture, and dynamic fracture are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Azdoud Y, Han F, Lubineau G (2014) The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture. Comput Mech 54(3):711–722

    Article  MathSciNet  MATH  Google Scholar 

  2. Bažant ZP, Luo W, Chau VT, Bessa MA (2016) Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. J Appl Mech 83(11):111004

    Article  Google Scholar 

  3. Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transf 53(19-20):4047–4059

    Article  MATH  Google Scholar 

  4. Butt SN, Timothy JJ, Meschke G (2017) Wave dispersion and propagation in state-based peridynamics. Comput Mech 60(5):725–738

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen YM (1975) Numerical computation of dynamic stress intensity factors by a lagrangian finite-difference method (the hemp code). Eng Fract Mech 7(4):653–660

    Article  Google Scholar 

  6. Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69:152–168

    Article  Google Scholar 

  7. Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10):1242–1258

    MATH  Google Scholar 

  8. Foster JT, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9(6):675–688

    Article  Google Scholar 

  9. Gerstle W, Silling S, Read D, Tewary V, Lehoucq R (2008) Peridynamic simulation of electromigration. Computers Materials & Continua 8(2):75–92

    Google Scholar 

  10. Gu X, Zhang Q, Huang D, Yv Y (2016) Wave dispersion analysis and simulation method for concrete shpb test in peridynamics. Eng Fract Mech 160:124–137

    Article  Google Scholar 

  11. Ha Y, Bobaru F (2009) Traction boundary conditions in peridynamics: a convergence study. Tech. rep., Technical report, Department of Engineering Mechanics, University of Nebraska–Lincoln, Lincoln, Nebraska

  12. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1-2):229–244

    Article  MATH  Google Scholar 

  13. Han F, Lubineau G, Azdoud Y (2016) Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure. J Mech Phys Solids 94:453–472

    Article  MathSciNet  Google Scholar 

  14. Harari I (1997) Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput Methods Appl Mech Eng 140(1-2):39–58

    Article  MathSciNet  MATH  Google Scholar 

  15. Harari I, Turkel E (1995) Accurate finite difference methods for time-harmonic wave propagation. J Comput Phys 119(2):252–270

    Article  MathSciNet  MATH  Google Scholar 

  16. Jabakhanji R, Mohtar RH (2015) A peridynamic model of flow in porous media. Adv Water Resour 78:22–35

    Article  Google Scholar 

  17. Kalthoff J (1973) On the propagation direction of bifurcated cracks. In: Proceedings of an international conference on dynamic crack propagation. Springer, pp 449–458

  18. Liu ZL, Menouillard T, Belytschko T (2011) An XFEM/Spectral element method for dynamic crack propagation. Int J Fract 169(2):183–198

    Article  MATH  Google Scholar 

  19. Madenci E, Oterkus E (2014) Peridynamic theory and its applications, vol 17. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Oterkus S, Madenci E, Agwai A (2014) Fully coupled peridynamic thermomechanics. J Mech Phys Solids 64:1–23

    Article  MathSciNet  MATH  Google Scholar 

  21. Ouchi H, Katiyar A, York J, Foster JT, Sharma MM (2015) A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach. Comput Mech 55(3):561–576

    Article  MathSciNet  MATH  Google Scholar 

  22. Seleson P (2014) Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations. Comput Methods Appl Mech Eng 282:184–217

    Article  MathSciNet  MATH  Google Scholar 

  23. Seleson P, Littlewood DJ (2016) Convergence studies in meshfree peridynamic simulations. Computers & Mathematics with Applications 71(11):2432–2448

    Article  MathSciNet  Google Scholar 

  24. Seleson P, Parks M (2011) On the role of the influence function in the peridynamic theory. Int J Multiscale Comput Eng 9(6):689–706

    Article  Google Scholar 

  25. Seleson P, Beneddine S, Prudhomme S (2013) A force-based coupling scheme for peridynamics and classical elasticity. Comput Mater Sci 66:34–49

    Article  Google Scholar 

  26. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175– 209

    Article  MathSciNet  MATH  Google Scholar 

  27. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17-18):1526–1535

    Article  Google Scholar 

  28. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  29. Tam CK, Webb JC (1993) Dispersion-relation-preserving finite difference schemes for computational acoustics. J Comput Phys 107(2):262–281

    Article  MathSciNet  MATH  Google Scholar 

  30. Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3):705–728

    Article  MathSciNet  MATH  Google Scholar 

  31. Weckner O, Emmrich E (2005) Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar. J Comput Appl Mech 6(2):311–319

    MathSciNet  MATH  Google Scholar 

  32. Weckner O, Silling SA (2011) Determination of nonlocal constitutive equations from phonon dispersion relations. Int J Multiscale Comput Eng 9(6):623–634

    Article  Google Scholar 

  33. Wildman RA, Gazonas GA (2014) A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 190(1-2):39–52

    Article  Google Scholar 

  34. Wildman RA, OGrady JT, Gazonas GA (2017) A hybrid multiscale finite element/peridynamics method. Int J Fract 207(1):41–53

    Article  Google Scholar 

  35. Zimmermann M (2005) A continuum theory with long-range forces for solids. PhD thesis, Massachusetts Institute of Technology

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Wildman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wildman, R.A. Discrete Micromodulus Functions for Reducing Wave Dispersion in Linearized Peridynamics. J Peridyn Nonlocal Model 1, 56–73 (2019). https://doi.org/10.1007/s42102-018-0001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-018-0001-0

Keywords

Navigation