Skip to main content

Advertisement

Log in

Inferences on cumulative incidence function for middle censored survival data with Weibull regression

  • Original Paper
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

This article considers the problem of competing risks analysis in the presence of middle censoring scheme. In this censoring, the exact lifetime of the subject under study becomes unobservable when it falls in a random censoring interval and the associated competing causes of failure can be identified in later inspection. We consider the cumulative incidence function for evaluation of competing risks by assuming a Weibull cause specific hazard function with the common shape parameter for all competing causes. Maximum likelihood and midpoint approximation methods are employed for point estimation of unknown parameters and cumulative incidence functions. Asymptotic confidence intervals of maximum likelihood estimators are computed. In addition, the Bayes estimators and the associated credible intervals are also considered. The Monte Carlo simulation and an illustrative example on bone marrow transplant data are given for comprehensive comparison of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

The data set used in manuscript is available in Klein and Moeschberger (2003) on page 12 in Section 1.10.

Code availability

The R codes for simulation and data analysis are available in Electronic Supplementary Material.

References

  • Abuzaid, A., El-Qumsan, M. A., & El-Habil, A. (2017). On the robustness of right and middle censoring schemes in parametric survival models. Communications in Statistics-Simulation and Computation, 46(3), 1771–1780.

    Article  MathSciNet  Google Scholar 

  • Ahmadi, K., Rezaei, M., & Yousefzadeh, F. (2017). Statistical analysis of middle censored competing risks data with exponential distribution. Journal of Statistical Computation and Simulation, 87(16), 3082–3110.

    Article  MathSciNet  Google Scholar 

  • Bakoyannis, G., Chu, F. I., Babiker, A. G., & Touloumi, G. (2021). Impact of covariate omission and categorization from the fine-gray model in randomized-controlled trials. Japanese Journal of Statistics and Data Science. https://doi.org/10.1007/s42081-021-00111-5.

    Article  MathSciNet  MATH  Google Scholar 

  • Beyersmann, J., Allignol, A., & Schumacher, M. (2012). Competing risks and multistate models with R. Springer Science & Business Media.

  • Chen, D., & Lio, Y. (2010). Parameter estimations for generalized exponential distribution under progressive type-i interval censoring. Computational Statistics & Data Analysis, 54(6), 1581–1591.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187–220.

    MathSciNet  MATH  Google Scholar 

  • Fan, T. H., Wang, Y. F., & Ju, S. K. (2019). A competing risks model with multiply censored reliability data under multivariate Weibull distributions. IEEE Transactions on Reliability, 68(2), 462–475.

    Article  Google Scholar 

  • Fine, J. P., & Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American statistical association, 94(446), 496–509.

    Article  MathSciNet  Google Scholar 

  • Jammalamadaka, S. R., & Mangalam, V. (2003). Nonparametric estimation for middle-censored data. Journal of nonparametric statistics, 15(2), 253–265.

    Article  MathSciNet  Google Scholar 

  • Jeong, J. H., & Fine, J. (2006). Direct parametric inference for the cumulative incidence function. Journal of the Royal Statistical Society: Series C (Applied Statistics), 55(2), 187–200.

    MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (Vol. 360). Wiley. https://doi.org/10.1002/9781118032985

  • Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data. Springer.

  • Li, C. (2016). Cause-specific hazard regression for competing risks data under interval censoring and left truncation. Computational Statistics & Data Analysis, 104, 197–208.

    Article  MathSciNet  Google Scholar 

  • Li, C. (2016). The fine-gray model under interval censored competing risks data. Journal of Multivariate Analysis, 143, 327–344.

    Article  MathSciNet  Google Scholar 

  • Lipowski, C., Lo, S. M., Shi, S., & Wilke, R. A. (2021). Competing risks regression with dependent multiple spells: Monte carlo evidence and an application to maternity leave. Japanese Journal of Statistics and Data Science. https://doi.org/10.1007/s42081-021-00110-6.

    Article  MathSciNet  MATH  Google Scholar 

  • Lo, S. M., Mammen, E., & Wilke, R. A. (2020). A nested copula duration model for competing risks with multiple spells. Computational Statistics & Data Analysis, 150, 106986.

    Article  MathSciNet  Google Scholar 

  • Lunn, D., Jackson, C., Best, N., Spiegelhalter, D., & Thomas, A. (2012). The BUGS book: A practical introduction to Bayesian analysis. Chapman and Hall/CRC.

  • Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Jr., Flournoy, N., Farewell, V. T., & Breslow, N. E. (1978). The analysis of failure times in the presence of competing risks. Biometrics, 34(4), 541–554.

    Article  Google Scholar 

  • Rivest, L. P., & Wells, M. T. (2001). A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. Journal of Multivariate Analysis, 79(1), 138–155.

    Article  MathSciNet  Google Scholar 

  • Robert, C. P., & Casella, G. (2010). Introducing Monte Carlo methods with R (Vol. 18). Springer Science & Business Media.

  • Teimouri, M., & Gupta, A. K. (2012). Estimation methods for the gompertz-makeham distribution under progressively type-i interval censoring scheme. National Academy Science Letters, 35(3), 227–235.

    Article  Google Scholar 

  • Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks. Proceedings of the National Academy of Sciences, 72(1), 20–22.

    Article  MathSciNet  Google Scholar 

  • Wang, L. (2016). Estimation for exponential distribution based on competing risk middle censored data. Communications in Statistics-Theory and Methods, 45(8), 2378–2391.

    Article  MathSciNet  Google Scholar 

  • Wang, Y. C., Emura, T., Fan, T. H., Lo, S. M., & Wilke, R. A. (2020). Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Quality and Reliability Engineering International, 36(5), 1622–1638.

    Article  Google Scholar 

  • Zhang, Z., & Sun, J. (2010). Interval censoring. Statistical Methods in Medical Research, 19(1), 53–70.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the journal’s Editors and anonymous referees for their helpful and constructive comments that helped to improve the manuscript.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 42 KB)

Appendix

Appendix

Here we provide the details of system of score equations used in Sect. 3.1. First, we define some notations for reducing the length of expressions

$$\begin{aligned} \varPsi= & {} \sum _{j=1}^{p}(\theta _{j}^{\alpha }e^{{\varvec{\beta }}_{j}^{\top }{\varvec{x}}_{i}}),\\ S(\varPsi ;u,v)= & {} \text {exp}\left( -\left( \sum _{j=1}^{p}\theta _{j}^{\alpha }e^{{\varvec{\beta }}_{j}^{\top }{\varvec{x}}_{i}}\right) u_{i}^{\alpha }\right) -\text {exp}\left( -\left( \sum _{j=1}^{p}\theta _{j}^{\alpha }e^{{\varvec{\beta }}_{j}^{\top }{\varvec{x}}_{i}}\right) v_{i}^{\alpha }\right) . \end{aligned}$$

From Eq. (9) we obtain the partial derivatives of log-likelihood with respect to each parameter by the following equations.

$$\begin{aligned} \frac{\partial \ell ({\varvec{\varTheta }})}{\partial \alpha }= & {} \frac{n_{1}}{\alpha }+\sum _{j=1}^{p}n_{1j} \log \theta _{j}+\sum _{i=1}^{n_{1}}\log t_{i}-\sum _{i=1}^{n_{1}}\frac{\partial \varPsi }{\partial \alpha }t_{i}^{\alpha }-\sum _{i=1}^{n_{1}}\varPsi t_{i}^{\alpha }\log t_{i}\nonumber \\&+\sum _{j=1}^{p}n_{2j}\log \theta _{j} -\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\partial \varPsi /\partial \alpha }{\varPsi } +\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\partial S(\varPsi ;u,v)/\partial \alpha }{S(\varPsi ;u,v)}=0\qquad \end{aligned}$$
(15)
$$\begin{aligned} \frac{\partial \ell ({\varvec{\varTheta }})}{\partial \theta _{j}}= & {} \frac{n_{1j}\alpha }{\theta _{j}} -\sum _{i=1}^{n_{1}}\frac{\partial \varPsi }{\partial \theta _{j}}t_{i}^{\alpha } +\frac{n_{2j}\alpha }{\theta _{j}}-\sum _{i=n_{1}+1}^{n_{1}+n_{2}} \frac{\partial \varPsi /\partial \theta _{j}}{\varPsi }\nonumber \\&+\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\partial S(\varPsi ;u,v)/\partial \theta _{j}}{S(\varPsi ;u,v)}=0 \end{aligned}$$
(16)
$$\begin{aligned} \frac{\partial \ell ({\varvec{\varTheta }})}{\partial {\varvec{\beta }}_{j}}= & {} \sum _{i=1}^{n_{1j}} {\varvec{x}}_{i}-\sum _{i=1}^{n_{1}}\frac{\partial \varPsi }{\partial {\varvec{\beta }}_{j}}t_{i}^{\alpha }+\sum _{i=n_{1}+1}^{n_{1}+n_{2j}} {\varvec{x}}_{i}-\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\partial \varPsi /\partial {\varvec{\beta }}_{j}}{\varPsi }\nonumber \\&+\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\partial S(\varPsi ;u,v)/\partial {\varvec{\beta }}_{j}}{S(\varPsi ;u,v)}=0 \end{aligned}$$
(17)

The observed Fisher information matrix is given by

$$\begin{aligned} {\varvec{I}}_{O}({\varvec{\varTheta }})= \begin{pmatrix} -\frac{\partial ^{2}\ell ({\varvec{\varTheta }})}{\partial \alpha ^{2}}&{} -\frac{\partial ^{2}\ell ({\varvec{\varTheta }})}{\partial \alpha \partial \theta _{j}} &{}-\frac{\partial ^{2}\ell ({\varvec{\varTheta }})}{\partial \alpha \partial {\varvec{\beta }}_{j}} \\ - &{}-\frac{\partial ^{2}\ell ({\varvec{\varTheta }})}{\partial \theta _{j}^{2}} &{}-\frac{\partial ^{2}\ell ({\varvec{\varTheta }})}{\partial \theta _{j}\partial {\varvec{\beta }}_{j}}\\ -&{}-&{}-\frac{\partial ^{2}\ell ({\varvec{\varTheta }})}{\partial {\varvec{\beta }}_{j}\partial {\varvec{\beta }}_{j}^{\top }}\end{pmatrix}_{{\varvec{\varTheta }}=\hat{{\varvec{\varTheta }}}} . \end{aligned}$$

The elements of \({\varvec{I}}_{O}({\varvec{\varTheta }})\) are given below.

$$\begin{aligned}&\frac{\partial \ell ({\varvec{\varTheta }})}{\partial \alpha ^{2}}= -\frac{n_{1}}{\alpha ^{2}} -\sum _{i=1}^{n_{1}}\frac{\partial ^{2}\varPsi }{\partial \alpha ^{2}}t_{i}^{\alpha } -2\sum _{i=1}^{n_{1}}\frac{\partial \varPsi }{\partial \alpha }t_{i}^{\alpha }\log t_{i} -\sum _{i=1}^{n_{1}}\varPsi t_{i}^{\alpha }(\log t_{i})^{2}\nonumber \\&\quad -\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\varPsi \partial ^{2}\varPsi / \partial \alpha ^{2}}{\varPsi ^{2}} +\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{(\partial \varPsi /\partial \alpha )^{2}}{\varPsi ^{2}}+\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\nonumber \\&\quad \frac{S(\varPsi ;u,v)\partial ^{2} S(\varPsi ;u,v)/\partial \alpha ^{2} -(\partial S(\varPsi ;u,v)/\partial \alpha )^{2}}{[S(\varPsi ;u,v)]^{2}}\end{aligned}$$
(18)
$$\begin{aligned}&\frac{\partial \ell ({\varvec{\varTheta }})}{\partial \theta _{j}\partial \alpha } =\frac{n_{1j}}{\theta _{j}}-\sum _{i=1}^{n_{1}}\frac{\partial ^{2}\varPsi }{\partial \theta _{j}\partial \alpha }t_{i}^{\alpha } -\sum _{i=1}^{n_{1}} \frac{\partial \varPsi }{\partial \theta _{j}}t_{i}^{\alpha }\log t_{i}+\frac{n_{2j}}{\theta _{j}}\nonumber \\&\quad -\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\varPsi \partial ^{2}\varPsi /\partial \theta _{j}\partial \alpha -\partial \varPsi /\partial \theta _{j}\partial \varPsi /\partial \alpha }{\varPsi ^{2}} +\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\nonumber \\&\quad \frac{S(\varPsi ;u,v)\partial ^{2} S(\varPsi ;u,v)/ \partial \theta _{j}\partial \alpha -(\partial S(\varPsi ;u,v)/\partial \theta _{j}) (\partial S(\varPsi ;u,v)/\partial \alpha )}{[S(\varPsi ;u,v)]^{2}}\nonumber \\ \end{aligned}$$
(19)
$$\begin{aligned}&\frac{\partial \ell ({\varvec{\varTheta }})}{\partial {\varvec{\beta }}_{j}\partial \alpha } = -\sum _{i=1}^{n_{1}}\frac{\partial ^{2}\varPsi }{\partial {\varvec{\beta }}_{j} \partial \alpha }t_{i}^{\alpha }-\sum _{i=1}^{n_{1}} \frac{\partial \varPsi }{\partial {\varvec{\beta }}_{j}}t_{i}^{\alpha }\log t_{i}\nonumber \\&\quad -\sum _{i=n_{1}+1}^{n_{1}+n_{2}} \frac{\varPsi \partial ^{2}\varPsi /\partial {\varvec{\beta }}_{j}\partial \alpha -\partial \varPsi /\partial {\varvec{\beta }}_{j}\partial \varPsi /\partial \alpha }{\varPsi ^{2}} +\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\nonumber \\&\quad \frac{S(\varPsi ;u,v)\partial ^{2} S(\varPsi ;u,v)/ \partial {\varvec{\beta }}_{j}\partial \alpha -(\partial S(\varPsi ;u,v)/\partial {\varvec{\beta }}_{j}) (\partial S(\varPsi ;u,v)/\partial \alpha )}{[S(\varPsi ;u,v)]^{2}}\nonumber \\ \end{aligned}$$
(20)

The other mixed partial derivatives can also be obtained.

Score equations under the MPA method are given below

$$\begin{aligned}&\frac{\partial \ell _\text {MPA}({\varvec{\varTheta }})}{\partial \alpha } =\frac{n_{1}}{\alpha }+\sum _{j=1}^{p}n_{1j}\log \theta _{j} +\sum _{i=1}^{n_{1}} \log t_{i}-\sum _{i=1}^{n_{1}}\frac{\partial \varPsi }{\partial \alpha }t_{i}^{\alpha } -\sum _{i=1}^{n_{1}}\varPsi t_{i}^{\alpha }\log t_{i}\nonumber \\&+\frac{n_{2}}{\alpha }+\sum _{j=1}^{p}n_{2j}\log \theta _{j} +\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\log t_{i}^{*}-\sum _{i=n_{1}+1}^{n_{1} +n_{2}}\frac{\partial \varPsi }{\partial \alpha }t_{i}^{*\alpha }-\sum _{i=n_{1}+1}^{n_{1} +n_{2}}\varPsi t_{i}^{*\alpha }\log t_{i}^{*}=0 \nonumber \\ \end{aligned}$$
(21)
$$\begin{aligned}&\frac{\partial \ell _\text {MPA}({\varvec{\varTheta }})}{\partial \theta _{j}} =\frac{n_{1j}\alpha }{\theta _{j}}-\sum _{i=1}^{n_{1}}\frac{\partial \varPsi }{\partial \theta _{j}}t_{i}^{\alpha }+\frac{n_{2j}\alpha }{\theta _{j}} -\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\partial \varPsi }{\partial \theta _{j}}t_{i}^{*\alpha }=0 \end{aligned}$$
(22)
$$\begin{aligned}&\frac{\partial \ell _\text {MPA}({\varvec{\varTheta }})}{\partial {\varvec{\beta }}_{j}} =\sum _{i=1}^{n_{1j}}{\varvec{x}}_{i}-\sum _{i=1}^{n_{1}}\frac{\partial \varPsi }{\partial {\varvec{\beta }}_{j}}t_{i}^{\alpha }+\sum _{i=n_{1}+1}^{n_{1}+n_{2j}} {\varvec{x}}_{i}-\sum _{i=n_{1}+1}^{n_{1}+n_{2}}\frac{\partial \varPsi }{\partial {\varvec{\beta }}_{j}}t_{i}^{*\alpha }=0 \end{aligned}$$
(23)

The variance formula of the CIF is given by

$$\begin{aligned}&\text {var}(\hat{F_{j}}(t;\hat{{\varvec{\varTheta }}},{\varvec{x}}))= \hat{F_{j}}(t;\hat{{\varvec{\varTheta }}},{\varvec{x}})^{2}\nonumber \\&\quad \left. \left( \frac{\partial \log {F_{j}}(t;{\varvec{\varTheta }},{\varvec{x}})}{\partial {\varvec{\varTheta }}} \right) \right| _{{\varvec{\varTheta }}=\hat{{\varvec{\varTheta }}}} {\varvec{I}}_O^{-1}(\hat{{\varvec{\varTheta }}}) \left. \left( \frac{\partial \log {F_{j}}(t;{\varvec{\varTheta }},{\varvec{x}})}{\partial {\varvec{\varTheta }}} \right) ^{\top } \right| _{{\varvec{\varTheta }}=\hat{{\varvec{\varTheta }}}}. \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, H., Chandra, N. Inferences on cumulative incidence function for middle censored survival data with Weibull regression. Jpn J Stat Data Sci 5, 65–86 (2022). https://doi.org/10.1007/s42081-021-00142-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-021-00142-y

Keywords

Mathematics Subject Classification

Navigation