Skip to main content
Log in

Assessing the numerical integration of dynamic prediction formulas using the exact expressions under the joint frailty-copula model

  • Original Paper
  • Recent Statistical Methods for Survival Analysis
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

Joint models allow survival outcomes of a patient to be dynamically predictable based on intermediate events observed after treatment. The existing dynamic prediction methods need some numerical integration over frailty or random-effects distributions since the integral is implicit and improper. For a joint frailty-copula model, the Clayton copula and the gamma frailty model have been used to derive a dynamic prediction formula based on meta-analytic data. However, the prediction formulas under the Clayton copula involve an improper integral and need to be approximated numerically, as in all the joint models. In this paper, we consider the Gumbel copula and the FGM copula to obtain the exact (true) prediction formula without any numerical integration. The proposed formula also provides a tool for assessing approximation errors occurring to the approximation by numerical integration. Our numerical assessments show some approximation errors of the true prediction formula especially when the frailty distribution is heavy-tailed. A real data example illustrates how the proposed formulas can be used for assessing the approximation error. Our study may suggest some assessments for approximation errors in other types of joint models using more complex random-effects and frailty distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amrhein, L., Harsha, K., Fuchs, C. (2019). A mechanistic model for the negative binomial distribution of single-cell mRNA counts. bioRxiv, p. 657619. https://doi.org/10.1101/657619

  • Amrhein, L., Harsha, K., Fuchs, C., Holoborodko, P. (2021). scModels: fitting discrete distribution models to count data, CRAN, https://CRAN.R-project.org/package=scModels

  • Ancarani, L. U., & Gasaneo, G. (2008). Derivatives of any order of the confluent hypergeometric function F 1 1 (a, b, z) with respect to the parameter a or b. Journal of Mathematical Physics, 49(6), 063508.

    Article  MathSciNet  Google Scholar 

  • Burzykowski, T., Molenberghs, G., Buyse, M., Geys, H., & Renard, D. (2001). Validation of surrogate end points in multiple randomized clinical trials with failure time end points. Applied Statistics, 50(4), 405–422.

    MathSciNet  MATH  Google Scholar 

  • Choi, Y. H., Jacqmin-Gadda, H., Król, A., Parfrey, P., Briollais, L., & Rondeau, V. (2020). Joint nested frailty models for clustered recurrent and terminal events: An application to colonoscopy screening visits and colorectal cancer risks in Lynch Syndrome families. Statistical Methods in Medical Research, 29(5), 1466–1479.

    Article  MathSciNet  Google Scholar 

  • Commenges, D., & Jacqmin-Gadda, H. (2015). Dynamical biostatistical models. CRC Press.

    Book  Google Scholar 

  • Emura T. (2021). joint.Cox: joint frailty-copula models for tumour progression and death in meta-analysis, CRAN, Ver 3.12, https://CRAN.R-project.org/package=joint.Cox.

  • Emura, T., & Hsu, J. H. (2020). Estimation of the Mann-Whitney effect in the two-sample problem under dependent censoring. Computational Statistics & Data Analysis, 150, 106990.

    Article  MathSciNet  Google Scholar 

  • Emura, T., Matsui, S., & Rondeau, V. (2019). Survival analysis with correlated endpoints: Joint frailty-copula models. Springer.

    Book  Google Scholar 

  • Emura, T., Nakatochi, M., Matsui, S., Michimae, H., & Rondeau, V. (2018). Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: Meta-analysis with a joint model. Statistical Methods in Medical Research, 27(9), 2842–2858.

    Article  MathSciNet  Google Scholar 

  • Emura, T., Nakatochi, M., Murotani, K., & Rondeau, V. (2017). A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research, 26(6), 2649–2666.

    Article  MathSciNet  Google Scholar 

  • Emura, T., Shih, J. H., Ha, I. D., & Wilke, R. A. (2020). Comparison of the marginal hazard model and the sub-distribution hazard model for competing risks under an assumed copula. Statistical Methods in Medical Research, 29(8), 2307–2327.

    Article  MathSciNet  Google Scholar 

  • Emura, T., Sofeu, C., & Rondeau, V. (2021). Conditional copula models for correlated survival endpoints: Individual patient data meta-analysis of randomized controlled trials (in review).

  • Feddag, M. L., & Bacci, S. (2009). Pairwise likelihood for the longitudinal mixed Rasch model. Computational Statistics & Data Analysis, 53(4), 1027–1037.

    Article  MathSciNet  Google Scholar 

  • Ganzfried, B. F., Riester, M., Haibe-Kains, B., Risch, T., et al. (2013). curatedOvarianData: Clinically annotated data for the ovarian cancer transcriptome. Database (Vol. 2013), bat013. https://doi.org/10.1093/database/bat013

  • Gumbel, E. J. (1960). Distributions de valeurs extrêmes en plusieurs dimensions. Publications De L’institut De Statistique De L’université De Paris, 9, 171–173.

    MathSciNet  MATH  Google Scholar 

  • Hofner, B., Hothorn, T., & Kneib, T. (2013). Variable selection and model choice in structured survival models. Computational Statistics, 28(3), 1079–1101.

    Article  MathSciNet  Google Scholar 

  • Khuri, A. I. (2003). Advanced calculus with applications in statistics (2nd ed.). Wiley.

    MATH  Google Scholar 

  • Li, Z., Chinchilli, V. M., & Wang, M. (2019). A Bayesian joint model of recurrent events and a terminal event. Biometrical Journal, 61(1), 187–202.

    Article  MathSciNet  Google Scholar 

  • Moreira, C., de Uña-Álvarez, J., & Braekers, R. (2021). Nonparametric estimation of a distribution function from doubly truncated data under dependence. Computational Statistics. https://doi.org/10.1007/s00180-021-01085-4

    Article  MathSciNet  Google Scholar 

  • Morgenstern, D. (1956). Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungsblatt fürMathematische Statistik., 8, 234–235.

    MathSciNet  MATH  Google Scholar 

  • Nelsen, R. B. (2006). An introduction to copulas (2nd ed.). Springer.

    MATH  Google Scholar 

  • Ota, S., & Kimura, M. (2021). Effective estimation algorithm for parameters of multivariate Farlie-Gumbel-Morgenstern copula. Japanese Journal of Statistics and Data Science. https://doi.org/10.1007/s42081-021-00118-y

    Article  Google Scholar 

  • Peng, M., Xiang, L., & Wang, S. (2018). Semiparametric regression analysis of clustered survival data with semi-competing risks. Computational Statistics & Data Analysis, 124, 53–70.

    Article  MathSciNet  Google Scholar 

  • Philipson, P., Hickey, G. L., Crowther, M. J., & Kolamunnage-Dona, R. (2020). Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data. Computational Statistics & Data Analysis, 151, 107010.

    Article  MathSciNet  Google Scholar 

  • Rizopoulos, D. (2012). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. Computational Statistics & Data Analysis, 56(3), 491–501.

    Article  MathSciNet  Google Scholar 

  • Rizopoulos, D., Molenberghs, G., & Lesaffre, E. M. (2017). Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biometrical Journal, 59(6), 1261–1276. https://doi.org/10.1002/bimj.201600238

    Article  MathSciNet  MATH  Google Scholar 

  • Rondeau, V., Mauguen, A., Laurent, A., Berr, C., & Helmer, C. (2017). Dynamic prediction models for clustered and interval-censored outcomes: Investigating the intra-couple correlation in the risk of dementia. Statistical Methods in Medical Research, 26(5), 2168–2183.

    Article  MathSciNet  Google Scholar 

  • Rondeau, V., Pignon, J. P., & Michiels, S. (2015). A joint model for dependence between clustered times to tumour progression and deaths: A meta-analysis of chemotherapy in head and neck cancer. Statistical Methods in Medical Research, 24, 711–729.

    Article  MathSciNet  Google Scholar 

  • Shih, J. H., Chang, Y. T., Konno, Y., & Emura, T. (2019). Estimation of a common mean vector in bivariate meta-analysis under the FGM copula. Statistics, A Journal of Theoretical and Applied Statistics, 53(3), 673–695.

    MathSciNet  MATH  Google Scholar 

  • Shih, J. H., & Emura, T. (2018). Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula. Computational Statistics, 33(3), 1293–1323.

    Article  MathSciNet  Google Scholar 

  • Shih, J. H., & Emura, T. (2019). Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula. Statistical Papers, 60(4), 1101–1118.

    Article  MathSciNet  Google Scholar 

  • Shih, J. H., & Emura, T. (2020). Penalized Cox regression with a five-parameter spline model. Communication in Statistics- Theory and Methods. https://doi.org/10.1080/03610926.2020.1772305

    Article  Google Scholar 

  • Shih, J. H., & Emura, T. (2021). On the copula correlation ratio and its generalization. Journal of Multivariate Analysis, 182, 104708.

    Article  MathSciNet  Google Scholar 

  • Shinohara, S., Lin, Y. H., Michimae, H., & Emura, T. (2020). Dynamic lifetime prediction using a Weibull-based bivariate failure time model: A meta-analysis of individual-patient data. Communications in Statistics-Simulation and Computation. https://doi.org/10.1080/03610918.2020.1855449

    Article  Google Scholar 

  • Sofeu, C., Emura, T., & Rondeau, V. (2021). A joint frailty-copula model for meta-analytic validation of failure time surrogate endpoints in clinical trials. Biometrical J, 63(2), 423–446.

    Article  MathSciNet  Google Scholar 

  • van Houwelingen, H. C., & Putter, H. (2011). Dynamic prediction in clinical survival analysis. CRC Press.

    Book  Google Scholar 

  • Wang, Y. C., & Emura, T. (2021). Multivariate failure time distributions derived from shared frailty and copulas. Japanese Journal of Statistics and Data Science. https://doi.org/10.1007/s42081-021-00123-1

    Article  Google Scholar 

  • Wang, Y. C., Emura, T., Fan, T. H., Lo, S. M., & Wilk, R. A. (2020). Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Quality and Reliability Engineering International., 36(5), 1622–1638.

    Article  Google Scholar 

  • Wu, B. H., Michimae, H., & Emura, T. (2020). Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model. Computational Statistics, 35(4), 1525–1552.

    Article  MathSciNet  Google Scholar 

  • Zhou, X., Kang, K., Kwok, T., & Song, X. (2020). Joint hidden Markov model for longitudinal and time-to-event data with latent variables. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2020.1865864

    Article  Google Scholar 

Download references

Acknowledgements

The authors kindly thank the editor and three anonymous referees for their valuable suggestions that improved the paper. We thank Prof. Takeshi Emura for his suggestions on our paper. Lin YH is financially supported by the Ministry of Science and Technology, Taiwan, through the grant “MOST 109-2636-E-008-009”. This work was partially supported by JSPS KAKENHI Grant Number JP21K12127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Michimae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendices

Appendix 1. Derivations under the Gumbel copula

We derive the dynamic prediction formulas under the Gumbel copula given \(\alpha =1\).

1.1 Derivation of Eq. (5)

By substituting \(\alpha =1\) into Eq. (3), the joint survival function under the Gumbel copula is

$$C_{\theta } \left[ {S_{X} \left( {x|u} \right),S_{D} \left( {y|u} \right)} \right] = {\text{exp}}\left[ { - u\left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}}}} } \right].$$

By integrating out the unobserved frailty u, the joint survival function is

$$\begin{aligned} \mathop \int \limits_{0}^{\infty } C_{\theta } \left[ {S_{X} \left( {x|u} \right),S_{D} \left( {y|u} \right)} \right]f_{\eta } \left( u \right){\text{d}}u & = \mathop \int \limits_{0}^{\infty } {\text{exp}}\left[ { - u\left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}}}} } \right]f_{\eta } \left( u \right){\text{d}}u \\ & = \left[ {1 + \eta \left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}}}} } \right]^{{ - \frac{1}{\eta }}} , \\ \end{aligned}$$

where the last equality follows from the Laplace transform \(\underset{0}{\overset{\infty }{\int }}\mathrm{e}\mathrm{x}\mathrm{p}\left(-su\right){f}_{\eta }\left(u\right)\mathrm{d}u={\left(1+\eta s\right)}^{-\frac{1}{\eta }}\).

1.2 Derivation of Eq. (6)

By integrating out the unobserved frailty u,

$$\begin{gathered} \mathop \int \limits_{0}^{\infty } uR\left( x \right)^{\theta } \left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}} - 1}} {\text{exp}}\left[ { - u\left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}}}} } \right]f_{\eta } \left( u \right){\text{d}}u \hfill \\ = R\left( x \right)^{\theta } \left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}} - 1}} \mathop \int \limits_{0}^{\infty } u\exp \left[ { - u\left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}}}} } \right]~f_{\eta } \left( u \right){\text{d}}u \hfill \\ {\text{~}} = R\left( x \right)^{\theta } \left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}} - 1}} \left[ {1 + \eta \left\{ {R\left( x \right)^{{\theta + 1}} + \Lambda \left( y \right)^{{\theta + 1}} } \right\}^{{\frac{1}{{\theta + 1}}}} } \right]^{{ - \frac{1}{\eta } - 1}} , \hfill \\ \end{gathered}$$

where the last equality follows from the derivative of the Laplace transform

$$\mathop \int \limits_{0}^{\infty } u{\text{~exp}}\left( { - su} \right)f_{\eta } \left( u \right){\text{d}}u = - \frac{\partial }{{\partial s}}\mathop \int \limits_{0}^{\infty } {\text{exp}}\left( { - us} \right)f_{\eta } \left( u \right){\text{d}}u = \left( {1 + \eta s} \right)^{{ - \frac{1}{\eta } - 1}} .$$

Appendix 2. Derivations under the FGM copula

We derive the dynamic prediction formula under the FGM copula under \(\alpha =1\) and \(\alpha =0\).

2.1 Derivation of Eq. (9)

By substituting \(\alpha =1\) into Eq. (7), the joint survival function under the FGM copula is

$$\begin{gathered} C_{\theta } \left[ {S_{X} \left( {x|u} \right),S_{D} \left( {y|u} \right)} \right] \hfill \\ \quad = {\text{exp}}\left[ { - \left\{ {uR\left( x \right) + \Lambda \left( y \right)} \right\}} \right]\left[ {1 + \theta \left\{ {1 - {\text{exp}}\left( { - uR\left( x \right)} \right)} \right\}\left\{ {1 - {\text{exp}}\left( { - \Lambda \left( y \right)} \right)} \right\}} \right]. \hfill \\ \end{gathered}$$

By integrating out the unobserved frailty u, the joint survival function is

$$\begin{gathered} \mathop \int \limits_{0}^{\infty } C_{\theta } \left[ {S_{X} \left( {x|u} \right),S_{D} \left( {y|u} \right)} \right]f_{\eta } \left( u \right){\text{d}}u \hfill \\ = \mathop \int \limits_{0}^{\infty } {\text{exp}}\left[ { - u\left\{ {R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]\left[ {1 + \theta \left\{ {1 - {\text{exp}}\left( { - uR\left( x \right)} \right)} \right\}\left\{ {1 - {\text{exp}}\left( { - u\Lambda \left( y \right)} \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u \hfill \\ = \left( {1 + \theta } \right)\mathop \int \limits_{0}^{\infty } {\text{exp}}\left[ { - u\left\{ {R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u - \theta \mathop \int \limits_{0}^{\infty } {\text{exp}}\left[ { - u\left\{ {2R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u \hfill \\ - \theta \mathop \int \limits_{0}^{\infty } {\text{exp}}\left[ { - u\left\{ {R\left( x \right) + 2\Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u + \theta \mathop \int \limits_{0}^{\infty } {\text{exp}}\left[ { - 2u\left\{ {R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u \hfill \\ = \frac{{\left( {1 + \theta } \right)}}{{\left[ {1 + \eta \left\{ {R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]^{{\frac{1}{\eta }}} }} - \frac{\theta }{{\left[ {1 + \eta \left\{ {2R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]^{{\frac{1}{\eta }}} }} \hfill \\ - \frac{\theta }{{\left[ {1 + \eta \left\{ {R\left( x \right) + 2\Lambda \left( y \right)} \right\}} \right]^{{\frac{1}{\eta }}} }} + \frac{\theta }{{\left[ {1 + 2\eta \left\{ {R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]^{{\frac{1}{\eta }}} }}, \hfill \\ \end{gathered}$$

where the last equality follows from the Laplace transform \(\underset{0}{\overset{\infty }{\int }}\mathrm{e}\mathrm{x}\mathrm{p}\left(-su\right){f}_{\eta }\left(u\right)\mathrm{d}u={\left(1+\eta s\right)}^{-\frac{1}{\eta }}\).

2.2 Derivation of Eq. (10)

By integrating out the unobserved frailty u,

$$\begin{gathered} \left[ {\mathop \int \limits_{0}^{\infty } u~{\text{exp}}\left[ { - u\left\{ {R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u + \theta \mathop \int \limits_{0}^{\infty } u~{\text{exp}}\left[ { - u\left\{ {R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u} \right. \hfill \\ - 2\theta \mathop \int \limits_{0}^{\infty } u~{\text{exp}}\left[ { - u\left\{ {2R\left( x \right) + \Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u - \theta \mathop \int \limits_{0}^{\infty } u~{\text{exp}}\left[ { - u\left\{ {R\left( x \right) + 2\Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u \hfill \\ \left. { + 2\theta \mathop \int \limits_{0}^{\infty } u~{\text{exp}}\left[ { - u\left\{ {2R\left( x \right) + 2\Lambda \left( y \right)} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u} \right] \hfill \\ = \left[ {\frac{{1 + \theta }}{{\left\{ {1 + \eta \left( {R\left( x \right) + \Lambda \left( y \right)} \right)} \right\}^{{\frac{1}{\eta } + 1}} }} - \frac{{2\theta }}{{\left\{ {1 + \eta \left( {2R\left( x \right) + \Lambda \left( y \right)} \right)} \right\}^{{\frac{1}{\eta } + 1}} }}} \right. \hfill \\ - \left. {\frac{\theta }{{\left\{ {1 + \eta \left( {R\left( x \right) + 2\Lambda \left( y \right)} \right)} \right\}^{{\frac{1}{\eta } + 1}} }} + \frac{{2\theta }}{{\left\{ {1 + 2\eta \left( {R\left( x \right) + \Lambda \left( y \right)} \right)} \right\}^{{\frac{1}{\eta } + 1}} }}} \right], \hfill \\ \end{gathered}$$

where the last equality follows from the derivative of the Laplace transform

$$\mathop \int \limits_{0}^{\infty } u{\text{~exp}}\left( { - su} \right)f_{\eta } \left( u \right){\text{d}}u = - \frac{\partial }{{\partial s}}\mathop \int \limits_{0}^{\infty } {\text{exp}}\left( { - us} \right)f_{\eta } \left( u \right){\text{d}}u = \left( {1 + \eta s} \right)^{{ - \frac{1}{\eta } - 1}} .$$

2.3 Derivation of Eq. (11)

By substituting \(\alpha =0\) into Eq. (7), the joint survival function under the FGM copula is

$$\begin{gathered} C_{\theta } \left[ {S_{X} \left( {x|u} \right),S_{D} \left( {y|u} \right)} \right] \hfill \\ = {\text{exp}}\left[ { - \left\{ {uR\left( x \right) + \Lambda \left( y \right)} \right\}} \right]\left[ {1 + \theta \left\{ {1 - {\text{exp}}\left( { - uR\left( x \right)} \right)} \right\}\left\{ {1 - {\text{exp}}\left( { - \Lambda \left( y \right)} \right)} \right\}} \right]. \hfill \\ \end{gathered}$$

By integrating out the unobserved frailty u, the joint survival function is

$$\begin{gathered} \mathop \int \limits_{0}^{\infty } C_{\theta } \left[ {S_{X} \left( {x|u} \right),S_{D} \left( {y|u} \right)} \right]f_{\eta } \left( u \right){\text{d}}u \hfill \\ = \mathop \int \limits_{0}^{\infty } {\text{exp}}\left[ { - \left\{ {uR\left( x \right) + \Lambda \left( y \right)} \right\}} \right]\left[ {1 + \theta \left\{ {1 - {\text{exp}}\left\{ { - uR\left( x \right)} \right\}} \right\}\left\{ {1 - {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}} \right\}} \right]f_{\eta } \left( u \right){\text{d}}u \hfill \\ = {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}\mathop \int \limits_{0}^{\infty } {\text{exp}}\left\{ { - uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u + \theta {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}\mathop \int \limits_{0}^{\infty } {\text{exp}}\left\{ { - uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u \hfill \\ - \theta {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}\mathop \int \limits_{0}^{\infty } {\text{exp}}\left\{ { - 2uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u - \theta {\text{exp}}\left\{ { - 2\Lambda \left( y \right)} \right\}\mathop \int \limits_{0}^{\infty } {\text{exp}}\left\{ { - uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u \hfill \\ + \theta {\text{exp}}\left\{ { - 2\Lambda \left( y \right)} \right\}\mathop \int \limits_{0}^{\infty } {\text{exp}}\left\{ { - 2uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u \hfill \\ = {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}\left[ {\frac{{1 + \theta \left\{ {1 - {\text{exp}}\left( { - \Lambda \left( y \right)} \right)} \right\}}}{{\left\{ {1 + \eta R\left( x \right)} \right\}^{{\frac{1}{\eta }}} }} + \frac{{\theta \left\{ {{\text{exp}}\left( { - \Lambda \left( y \right)} \right) - 1} \right\}}}{{\left\{ {1 + 2\eta R\left( x \right)} \right\}^{{\frac{1}{\eta }}} }}} \right], \hfill \\ \end{gathered}$$

where the last equality follows from the Laplace transform

$$\mathop \int \limits_{0}^{\infty } {\text{exp}}\left( { - su} \right)f_{\eta } \left( u \right){\text{d}}u = \left( {1 + \eta s} \right)^{{ - \frac{1}{\eta }}} .$$

2.4 Derivation of Eq. (12)

By integrating out the unobserved frailty u,

$$\begin{gathered} {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}\left[ {\left( {1 + \theta } \right)\mathop \int \limits_{0}^{\infty } u{\text{exp}}\left\{ { - uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u - 2\theta \mathop \int \limits_{0}^{\infty } u{\text{exp}}\left\{ { - 2uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u} \right. \hfill \\ - \left. {\theta {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}\mathop \int \limits_{0}^{\infty } u{\text{exp}}\left\{ { - uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u + 2\theta {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}\mathop \int \limits_{0}^{\infty } u{\text{exp}}\left\{ { - 2uR\left( x \right)} \right\}f_{\eta } \left( u \right){\text{d}}u} \right] \hfill \\ = {\text{exp}}\left\{ { - \Lambda \left( y \right)} \right\}\left[ {\frac{{1 + \theta \left\{ {1 - {\text{exp}}\left( { - \Lambda \left( y \right)} \right)} \right\}}}{{\left\{ {1 + \eta R\left( x \right)} \right\}^{{\frac{1}{\eta } + 1}} }} + \frac{{2\theta \left\{ {{\text{exp}}\left( { - \Lambda \left( y \right)} \right) - 1} \right\}}}{{\left\{ {1 + 2\eta R\left( x \right)} \right\}^{{\frac{1}{\eta } + 1}} }}} \right], \hfill \\ \end{gathered}$$

where the last equality follows from the derivative of the Laplace transform

$$\mathop \int \limits_{0}^{\infty } u{\text{~exp}}\left( { - su} \right)f_{\eta } \left( u \right){\text{d}}u = - \frac{\partial }{{\partial s}}\mathop \int \limits_{0}^{\infty } {\text{exp}}\left( { - us} \right)f_{\eta } \left( u \right){\text{d}}u = \left( {1 + \eta s} \right)^{{ - \frac{1}{\eta } - 1}} .$$

Appendix 3. R functions to compute prediction formulas

To implement dynamic prediction, we introduce our original R functions that compute \(\hat{F}\left( {t,t + w|.,\boldsymbol{Z}} \right)\) under the Gumbel copula (Sect. 3.1) and the FGM copula (Sect. 3.2). The R source codes are given in Electric Supplementary Material.

Users who wish to calculate \(\widehat{F}\left(t,t+w|.,\boldsymbol{Z}\right)\) under the Gumbel copula should use the R functions called F.windows.Gumbelcop1(.) or F.windows.Gumbelcop(.). The former can calculate the exact value of \(\widehat{F}\left(t,t+w|.,\boldsymbol{Z}\right)\) under \(\alpha =1\) while the latter calculate the approximate value under any \(\alpha\). Hence, "cop" and "cop1" are related to \(\alpha\). Under the FGM copula, users should use F.windows.FGMcop1(.), F.windows.FGMcop0(.), or F.windows.FGMcop(.), where the first two gives the exact values while the last one gives the approximate value.

The above functions are workable when their subroutine functions are defined in the workspace (global environments). The names of subroutines are without “s”, such as F.window.Gumbelcop1(.), F.window.Gumbelcop(.), and others.

All the functions have the following arguments to be supplied by users:

  • prediction time = time (scalar)

  • widths of prediction interval = widths (scalar or vector)

  • event time = X (scalar)

  • covariates for TTP = Z1 (scalar or vector)

  • covariates for OS = Z2 (scalar or vector)

  • regression coefficients for TTP = beta1 (scalar or vector)

  • regression coefficients for OS = beta2 (scalar or vector)

  • variance of frailty = eta (scalar)

  • copula parameter = theta (scalar)

  • power parameter of frailty = alpha (scalar)

  • parameters related to the baseline hazard for TTP = g (vector of length 5)

  • parameters related to the baseline hazard for OS = h (vector of length 5)

  • lower bound for time-to-event = xi1 (scalar)

  • upper bound for time-to-death = xi3 (scalar)

  • logical value to decide if the plot is shown = Fplot (TRUE or FALSE).

Below, we provide a short example of using our R functions. Suppose we wish to calculate F under the Gumbel copula given \(\alpha =1\) using the exact method. After loading all the R functions into the R console, we enter the following commands (red parts) to obtain the results (blue parts):

figure a

The output shows the values of \(\widehat{F}\left(t,t+w|X=x,\boldsymbol{Z}\right)\) and \(\widehat{F}\left(t,t+w|X>t,\boldsymbol{Z}\right)\) for given values of \(t\) and \(w\) under \(X=300\). Below is the interpretation of the last line of the output.

  1. (i).

    Given that a patient had no tumour progression at time \(t=1000\) (i.e. \(\mathrm{X}>1000\)), the probability of death between \(t=1000\) and \(t+w=2000\) is 0.539.

  2. (ii).

    Given that a patient had tumour progression at time \(x=300\) (i.e. \(\mathrm{X}\le 1000\)), the probability of death between \(t=1000\) and \(t+w=2000\) is 0.962.

Further examples for the input and output are given in Electric Supplementary Material.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakami, R., Michimae, H. & Lin, YH. Assessing the numerical integration of dynamic prediction formulas using the exact expressions under the joint frailty-copula model. Jpn J Stat Data Sci 4, 1293–1321 (2021). https://doi.org/10.1007/s42081-021-00133-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-021-00133-z

Keywords

Navigation