Skip to main content
Log in

Multivariate failure time distributions derived from shared frailty and copulas

  • Original Paper
  • Recent Statistical Methods for Survival Analysis
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

Copulas and frailty models have been two major tools for modeling dependence in multivariate failure time distributions. The objective of this paper is to investigate multivariate failure time models that include copula models and frailty models as special cases. To this end, we revisit a broad family of multivariate failure time models proposed by Marshall and Olkin (JASA 83:834–841, 1988). This family accommodates both frailty and copulas, unlike the models that accommodate only one of them. However, their work focused on very specific copulas and is limited to bivariate models. Instead, we focus more on popular members of copulas and some multivariate models. Another novel feature of our paper is to restrict our attention to the shared frailty model, and call our restricted class as the generic name “frailty-copula”. This name yields a taxonomic classification of all the members of distributions. We also consider somewhat complex frailty distributions (two-parameter gamma, lognormal, truncated-normal, and folded-normal), which were not considered in Marshall and Olkin (1988) and other papers of frailty models. To illustrate the usefulness of the proposed model, we briefly discuss maximum likelihood estimation methods with some numerical evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aalen, O. O. (1994). Effects of frailty in survival analysis. Statistical Methods in Medical Research, 3(3), 227–243

    Google Scholar 

  • Bairamov, I., & Bayramoglu, K. (2013). From the Huang-Kotz FGM distribution to Baker’s bivariate distribution. Journal of Multivariate Analysis, 113, 106–115

    MathSciNet  MATH  Google Scholar 

  • Balakrishnan, N., & Lai, C. D. (2009). Continuous Bivariate Distributions. Springer.

    MATH  Google Scholar 

  • Charpentier, A., Fougères, A. L., Genest, C., & Nešlehová, J. G. (2014). Multivariate archimax copulas. Journal of Multivariate Analysis, 126, 118–136

    MathSciNet  MATH  Google Scholar 

  • Clayton, D. G. (1978). A model for association in bivariate life tables and its application to epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151

    MathSciNet  MATH  Google Scholar 

  • Cohen, A. (1951). On estimating the mean and variance of singly truncated normal frequency distributions from the first three sample moments. Annals of the Institute of Statistical Mathematics, 3, 37–44

    MathSciNet  MATH  Google Scholar 

  • Cohen, A. (1961). Tables for maximum likelihood estimates: Singly truncated and singly censored samples. Technometrics, 3, 535–541

    MathSciNet  MATH  Google Scholar 

  • Cohen, A. (1991). Truncated and censored samples: theory and applications; CRC Press: New York, NY, USA

  • Cook, R. D., & Johnson, M. E. (1986). Generalized Burr-Pareto-logistic distributions with applications to a uranium exploration data set. Technometrics, 28(2), 123–131

    MathSciNet  Google Scholar 

  • Crowder, M. J. (2012). Multivariate Survival Analysis and Competing Risks. CRC Press.

    MATH  Google Scholar 

  • Domma, F., & Giordano, S. (2013). A copula-based approach to account for dependence in stress-strength models. Statistical Papers, 54(3), 807–826

    MathSciNet  MATH  Google Scholar 

  • Duchateau, L., & Janssen, P. (2008). The Frailty Model. Springer.

    MATH  Google Scholar 

  • Duchateau, L., Janssen, P., Lindsey, P., Legrand, C., Nguti, R., & Sylvester, R. (2002). The shared frailty model and the power for heterogeneity tests in multicenter trials. Computational Statistics & Data Analysis, 40(3), 603–620

    MathSciNet  MATH  Google Scholar 

  • Emura, T. (2020). Copula.surv: association analysis of bivariate survival data based on copulas, CRAN. https://CRAN.R-project.org/package=Copula.surv

  • Emura, T., & Chen, Y. H. (2016). Gene selection for survival data under dependent censoring, a copula-based approach. Statistical Methods in Medical Research, 25(6), 2840–2857

    MathSciNet  Google Scholar 

  • Emura, T., & Michimae, H. (2017). A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae. Environmental and Ecological Statistics, 24(1), 151–173

    MathSciNet  Google Scholar 

  • Emura, T., Nakatochi, M., Murotani, K., & Rondeau, V. (2017). A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research, 26, 2649–2666

    MathSciNet  Google Scholar 

  • Emura, T., Matsui, S., & Rondeau, V. (2019). Survival Analysis with Correlated Endpoints. Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer

  • Emura, T., Kao, F. H., & Michimae, H. (2014). An improved nonparametric estimator of sub-distribution function for bivariate competing risk models. Journal of Multivariate Analysis, 132, 229–241

    MathSciNet  MATH  Google Scholar 

  • Everitt B. (2003). Modern Medical Statistics: a Practical Guide. Arnold

  • Genest, C., & MacKay, R. J. (1986). Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Canadian Journal of Statistics, 14(2), 145–159

    MathSciNet  MATH  Google Scholar 

  • Gumbel, E. J. (1960). Distributions de valeurs extremes en plusieurs dimensions. PubL Inst Stat. Pari, 9, 171–173

    MathSciNet  MATH  Google Scholar 

  • Ha, I. D., Jeong, J. H., & Lee, Y. (2017). Statistical Modelling of Survival Data with Random Effects: H-likelihood Approach. Springer.

    MATH  Google Scholar 

  • Ha, I. D., Kim, J. M., & Emura, T. (2019). Profile likelihood approaches for semiparametric copula and frailty models for clustered survival data. Journal of Applied Statistics, 46(14), 2553–2571

    MathSciNet  Google Scholar 

  • Ha, I. D., & Lee Y. (2021). A review of h-likelihood for survival analysis, Japanese Journal of Statistics and Data Science. https://doi.org/10.1007/s42081-021-00125-z

  • Hougaard, P. (1995). Frailty models for survival data. Lifetime Data Analysis, 1(3), 255–273

    MathSciNet  Google Scholar 

  • Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer.

    MATH  Google Scholar 

  • Huang, J. S., Dou, X., Kuriki, S., & Lin, G. D. (2013). Dependence structure of bivariate order statistics with applications to Bayramoglu’s distributions. Journal of Multivariate Analysis, 114, 201–208

    MathSciNet  MATH  Google Scholar 

  • Hürlimann, W. (2017). A comprehensive extension of the FGM copula. Statistical Papers, 58, 373–392

    MathSciNet  MATH  Google Scholar 

  • Joe, H. (1993). Parametric families of multivariate distributions with given margins. Journal of Multivariate Analysis, 46(2), 262–282

    MathSciNet  MATH  Google Scholar 

  • Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall/CRC

    MATH  Google Scholar 

  • Joe, H. (2015). Dependence Modeling with Copulas. Chapman and Hall/CRC

  • Johnson, N. L., & Kotz, S. (1975). On some generalized Farlie-Gumbel-Morgenstern distributions. Communications in Statistics-Theory and Methods, 4(5), 415–427

    MathSciNet  MATH  Google Scholar 

  • Kotz, S., Balakrishnan, N., & Johnson, N. L. (2000). Continuous Multivariate Distributions, Volume 1: Models

  • Kwon, S., Ha, I. D., Shih, J.-H., & Emura, T. (2021). Flexible parametric copula modelling approaches for clustered survival data. Pharmaceutical Statistics, in revision

  • Leone, F. C., Nelson, L. S., & Nottingham, R. B. (1961). The folded normal distribution. Technometrics, 3(4), 543–550

    MathSciNet  Google Scholar 

  • Lipowski, C., Lo, S. M., Shi, S., & Wilke, R. A. (2021). Competing risks regression with dependent multiple spells: Monte Carlo evidence and an application to maternity leave. Japanese Journal of Statistics and Data Science. https://doi.org/10.1007/s42081-021-00110-6

    Article  Google Scholar 

  • Lodhi, C., Mani Tripathi, Y., & Kumar Rastogi, M. (2019). Estimating the parameters of a truncated normal distribution under progressive type II censoring. Communications in Statistics-Simulation and Computation. https://doi.org/10.1080/03610918.2019.1614619

    Article  Google Scholar 

  • Lo, S. M., Stephan, G., & Wilke, R. A. (2017). Competing risks copula models for unemployment duration: An application to a German Hartz reform. Journal of Econometric Methods, 6(1)

  • Lu, J. C., & Bhattacharyya, G. K. (1990). Some new constructions of bivariate Weibull models. Annals of the Institute of Statistical Mathematics, 42(3), 543–559

    MathSciNet  MATH  Google Scholar 

  • Marshall, A. W., & Olkin, I. (1988). Families of multivariate distributions. Journal of the American Statistical Association, 83(403), 834–841

    MathSciNet  MATH  Google Scholar 

  • Moradian, H., Larocque, D., & Bellavance, F. (2019). Survival forests for data with dependent censoring. Statistical Methods in Medical Research, 28(2), 445–461

    MathSciNet  Google Scholar 

  • McNeil, A. J., & Neslehová, J. (2010). From Archimedean to Liouville copulas. Journal of Multivariate Analysis, 101, 1772–1790

    MathSciNet  MATH  Google Scholar 

  • Nelsen, R. B. (2006). An Introduction to Copulas. (2nd ed.). Springer.

    MATH  Google Scholar 

  • Oakes, D. (1989). Bivariate survival models induced by frailties. JASA, 84, 487–493

    MathSciNet  MATH  Google Scholar 

  • Ota, S., Kimura, M. (2021). Effective estimation algorithm for parameters of multivariate Farlie–Gumbel–Morgenstern copula. Japanese Journal of Statistics and Data Science. https://doi.org/10.1007/s42081-021-00118-y

  • Peng, M., Xiang, L., & Wang, S. (2018). Semiparametric regression analysis of clustered survival data with semi-competing risks. Computational Statistics & Data Analysis, 124, 53–70

    MathSciNet  MATH  Google Scholar 

  • Piancastelli, L. S., Barreto-Souza, W., & Mayrink, V. D. (2020). Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data. Annals of the Institute of Statistical Mathematics. https://doi.org/10.1007/s10463-020-00774-z

    Article  MATH  Google Scholar 

  • Prenen, L., Braekers, R., & Duchateau, L. (2018). Investigating the correlation structure of quadrivariate udder infection times through hierarchical Archimedean copulas. Lifetime Data Analysis, 24, 719–742

    MathSciNet  MATH  Google Scholar 

  • Putter, H., & van Houwelingen, H. C. (2015). Frailties in multi-state models: Are they identifiable? Do we need them? Statistical Methods in Medical Research, 24(6), 675–692

    MathSciNet  Google Scholar 

  • Quessy, J. F., Rivest, L. P., & Toupin, M. H. (2016). On the family of multivariate chi-square copulas. Journal of Multivariate Analysis, 152, 40–60

    MathSciNet  MATH  Google Scholar 

  • Quessy, J. F., Rivest, L. P., & Toupin, M. H. (2019). Goodness-of-fit tests for the family of multivariate chi-square copulas. Computational Statistics & Data Analysis, 140, 21–40

    MathSciNet  MATH  Google Scholar 

  • Rivest, L. P., & Wells, M. T. (2001). A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. Journal of Multivariate Analysis, 79(1), 138–155

    MathSciNet  MATH  Google Scholar 

  • Rondeau V, Pignon JP, Michiels S, Mach-NC Collaborative Group. (2015). A joint model for the dependence between clustered times to tumour progression and deaths: A meta-analysis of chemotherapy in head and neck cancer. Statistical Methods in Medical Research, 24(6), 711–729

    MathSciNet  Google Scholar 

  • Rotolo, F., Legrand, C., & Van Keilegom, I. (2013). A simulation procedure based on copulas to generate clustered multi-state survival data. Computer Methods and Programs in Biomedicine, 109(3), 305–312

    Google Scholar 

  • Saminger-Platz, S., Kolesárová, A., Šeliga, A., Mesiar, R., & Klement, E. P. (2020). The impact on the properties of the EFGM copulas when extending this family. Fuzzy Sets and Systems. https://doi.org/10.1016/j.fss.2020.11.001

    Article  MATH  Google Scholar 

  • Schneider, S., Demarqui, F. N., et al. (2020). An approach to model clustered survival data with dependent censoring. Biometrical Journal, 62(1), 157–174

    MathSciNet  MATH  Google Scholar 

  • Shih, J.-H. (2014). Copula models. Handbook of Survival Analysis, Chapter 24. (pp. 489–510). CRC Press.

    Google Scholar 

  • Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ Inst Statist Univ Paris, 8, 229–231

    MathSciNet  MATH  Google Scholar 

  • Sundberg, R. (1974). On estimation and testing for the folded normal distribution. Communications in Statistics-Theory and Methods, 3(1), 55–72

    MathSciNet  MATH  Google Scholar 

  • Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16(3), 439–454

    Google Scholar 

  • Wang, Y. C., Emura, T., Fan, T. H., Lo, S. M., & Wilke, R. A. (2020). Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Quality and Reliability Engineering International, 36(5), 1622–1638

    Google Scholar 

  • Whitmore, G. A., & Lee, M. L. T. (1991). A multivariate survival distribution generated by an inverse Gaussian mixture of exponentials. Technometrics, 33(1), 39–50

    MathSciNet  MATH  Google Scholar 

  • Wu, B. H., Michimae, H., & Emura, T. (2020). Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty-copula model. Computational Statistics, 35, 1525–1552

    MathSciNet  MATH  Google Scholar 

  • Zeng, X., & Gui, W. (2021). Statistical inference of truncated normal distribution based on the generalized progressive hybrid censoring. Entropy, 23(2), 186

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors kindly thank the coordinating editor (Prof. Ha) and two anonymous referees for their valuable suggestions that improved the paper. The research of Emura T is funded by the grant from the Ministry of Science and Technology of Taiwan (MOST 107-2118-M-008 -003-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Emura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The plots for the lognormal-Clayton and the gamma-Gumbel models

Figure 4 plots \({S}_{{T}_{1}{T}_{2}}({t}_{1},{t}_{2})\) under the lognormal-Clayton model with different values for \(\theta \) and \({\sigma }^{2}\). The degree of dependence for the model is increased when \(\theta \) is increased or \({\sigma }^{2}\) is increased. Hence, both \(\theta \) and \({\sigma }^{2}\) contribute to the degree of dependence.

Fig. 4
figure 4

The contour plot of the joint survival function for the lognormal-Clayton model

Figure 5 plots \({S}_{{T}_{1}{T}_{2}}({t}_{1},{t}_{2})\) under the gamma-Gumbel model with different values for \(\theta \) and \(\eta \). The degree of dependence is increased when \(\theta \) is increased or \(\eta \) is increased. Hence, both \(\theta \) and \(\eta \) contribute to the degree of dependence.

Fig. 5
figure 5

The contour plot of the joint survival function for the gamma-Gumbel model

Appendix B: Mathematical derivations

2.1 Appendix B1: Derivations for the truncated-lognormal-Gumbel model:

By integrating out the frailty term \(Z\sim TN(\mu ,{\sigma }^{2})\), the truncated-lognormal-Gumbel model is

$$ \begin{gathered} S_{{T_{1} ,\;...,\;T_{k} }} (\;t_{1} ,\;...,\;t_{k} \;) = \int\limits_{ - \infty }^{\infty } {S_{{T_{1} ,\;...,\;T_{k} |Z}} (\;t_{1} ,\;...,\;t_{k} |Z\;)f_{Z} (\;z\;)} {\text{d}}z \\ = \int\limits_{\mu }^{\infty } {\exp (\; - zA_{\theta } \;)\frac{1}{\sigma }\sqrt {\frac{2}{\pi }} \exp \left\{ {\; - \frac{{(\;z - \mu \;)^{2} }}{{2\sigma^{2} }}\;} \right\}} {\text{d}}z \\ = \int\limits_{\mu }^{\infty } {\frac{1}{\sigma }\sqrt {\frac{2}{\pi }} \exp \left[ {\; - \frac{1}{{2\sigma^{2} }}\{ \;2\sigma^{2} A_{\theta } z + (\;z - \mu \;)^{2} \;\} \;} \right]} {\text{d}}z \\ = 2\exp \left\{ {\;\frac{{(\;\mu - \sigma^{2} A_{\theta } \;)^{2} - \mu^{2} }}{{2\sigma^{2} }}\;} \right\}\int\limits_{\mu }^{\infty } {\frac{1}{{\sigma \sqrt {{2}\pi } }}\exp \left[ {\; - \frac{{\{ \;z - (\;\mu - \sigma^{2} A_{\theta } \;)\;\}^{2} }}{{2\sigma^{2} }}\;} \right]} {\text{d}}z, \\ \end{gathered} $$

Applying a change of variable by \(w=\{z-(\mu -{\sigma }^{2}{A}_{\theta })\}/\sigma \), we obtain the desired result

$${S}_{{T}_{1}...{T}_{k}}\left({t}_{1},...,{t}_{k}\right)=2{\mathrm{exp}}\left(\frac{{\sigma }^{2}}{2}{A}_{\theta }^{2}-\mu {A}_{\theta }\right)\Phi \left(-\sigma {A}_{\theta }\right).$$

2.2 Appendix B2: Derivations for the folded-normal-Gumbel model:

Under \(Z\sim FN(\mu ,{\sigma }^{2})\), what we need to compute is

$${S}_{{T}_{1}...{T}_{k}}\left({t}_{1},...,{t}_{k}\right)=\underset{0}{\overset{\infty }{\int }}{\mathrm{exp}}\left(-z{A}_{\theta }\right)\frac{1}{\sigma \sqrt{2\pi }}\left[{\mathrm{exp}}\left\{-\frac{{\left(z+\mu \right)}^{2}}{2{\sigma }^{2}}\right\}+{\mathrm{exp}}\left\{-\frac{{\left(z-\mu \right)}^{2}}{2{\sigma }^{2}}\right\}\right]{\text{d}}z.$$

By a similar calculation as Appendix B.1, one has

$$\underset{0}{\overset{\infty }{\int }}{\mathrm{exp}}\left(-z{A}_{\theta }\right)\frac{1}{\sigma \sqrt{2\pi }}{\mathrm{exp}}\left\{-\frac{{\left(z+\mu \right)}^{2}}{2{\sigma }^{2}}\right\}{\text{d}}z={\mathrm{exp}}\left(\frac{{\sigma }^{2}}{2}{A}_{\theta }^{2}+\mu {A}_{\theta }\right)\Phi \left(-\frac{\mu }{\sigma }-\sigma {A}_{\theta }\right).$$

Replacing \(\mu \) by \(-\mu \), one also obtains another integral to get the desired result

$${S}_{{T}_{1}...{T}_{k}}\left({t}_{1},...,{t}_{k}\right)={\mathrm{exp}}\left(\frac{{\sigma }^{2}}{2}{A}_{\theta }^{2}+\mu {A}_{\theta }\right)\Phi \left(-\frac{\mu }{\sigma }-\sigma {A}_{\theta }\right)+{\mathrm{exp}}\left(\frac{{\sigma }^{2}}{2}{A}_{\theta }^{2}-\mu {A}_{\theta }\right)\Phi \left(\frac{\mu }{\sigma }-\sigma {A}_{\theta }\right).$$

2.3 Appendix B3: Derivations of the marginal distributios for the gamma-FGM model:

To derive the marginal distributions from the gamma-FGM model, we consider the Pascal triangle \({a}_{1,1}={1},{a}_{2,1}=1,{a}_{2,2}={1}, {a}_{j,1}=1,{a}_{j,j}={1}\) for\(j=2,...,l\), and \({a}_{l,j}={a}_{l-1,j-1}+{a}_{l-1,j+1}\) for\(j=2,...,l-1, l=3,4,...\). (Fig. 6).

Fig. 6
figure 6

The representation of the coefficient \(a_{i,\;j}\) based on the Pascal triangle

Then, setting \({t}_{i}=0\) for \(\forall i\ne j\), the marginal survival function is

$$\begin{array}{c}{S}_{{T}_{j}}({t}_{j})={1+\beta {\Lambda }_{0j}({t}_{j})}^{-\alpha }+\theta \sum_{l=1}^{k}{(-1)}^{l+1}{a}_{k,l}{[1+\beta {\Lambda }_{0j}({t}_{j})]}^{-\alpha }\\ +\theta \sum_{l=1}^{k}{\left(-1\right)}^{l}{a}_{k,l}{{1+2\beta {\Lambda }_{0j}({t}_{j})}}^{-\alpha }, j=1,...,k.\end{array}$$

Since \(\sum_{l=1}^{k}{(-1)}^{l+1}{a}_{k,l}=\sum_{l=1}^{k}{(-1)}^{l}{a}_{k,l}=0,\forall k=2,3,...\), the marginal survival functions can be written as \({S}_{{T}_{j}}({t}_{j})={(1+\beta {\Lambda }_{0j}({t}_{j}))}^{-\alpha }\). Note that the marginal can also be derived by integrating \({S}_{{T}_{k}|Z}({t}_{k}|Z)\) by the frailty distribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YC., Emura, T. Multivariate failure time distributions derived from shared frailty and copulas. Jpn J Stat Data Sci 4, 1105–1131 (2021). https://doi.org/10.1007/s42081-021-00123-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-021-00123-1

Keywords

Navigation