Skip to main content

Advertisement

Log in

microRNA-29b-3p attenuates diabetic nephropathy in mice by modifying EZH2

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Objective

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease around the world. This study investigated the role of microRNA (miR)-29b-3p in DN and the mechanism of the miR-29b-3p/EZH2 axis in DN.

Methods

Peripheral blood samples of DN patients were collected and miR-29b-3p and EZH2 expression levels were evaluated using RT-qPCR. DN mouse models were successfully established, and then treated with miR-29b-3p overexpression or EZH2 silence. IL-1β, IL-6, and TNF-α levels were assessed by ELISA. Blood glucose, serum creatinine (Scr), 24-h urine volume, 24-h urine protein, and blood urea nitrogen (BUN) levels were examined by automatic biochemical analyzer detection. HE staining was performed to observe the renal histopathology, and TUNEL staining was implemented to test apoptosis in renal tissues. The binding relationship between miR-29b-3p and EZH2 was validated by using a bioinformatics website and dual luciferase reporter gene assay.

Results

miR-29b-3p was lowly expressed, and EZH2 was highly expressed in patients with DN. Overexpressing miR-29b-3p or silencing EZH2 attenuated renal dysfunction, suppressed inflammation and apoptosis, and relieved renal injuries in mice with DN. miR-29b-3p inhibited EZH2, and miR-29b-3p overexpression mitigated renal injuries in DN mice by repressing EZH2.

Conclusion

miR-29b-3p suppresses EZH2 expression thereby inhibiting the progression of DN in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu D, Zheng W, Pan S, Liu Z (2020) Concise review: current trends on applications of stem cells in diabetic nephropathy. Cell Death Dis 11(11):1000. https://doi.org/10.1038/s41419-020-03206-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bonner R, Albajrami O, Hudspeth J, Upadhyay A (2020) Diabetic kidney disease. Prim Care 47(4):645–659. https://doi.org/10.1016/j.pop.2020.08.004

    Article  PubMed  Google Scholar 

  3. Selby NM, Taal MW (2020) An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab 22(Suppl 1):3–15. https://doi.org/10.1111/dom.14007

    Article  PubMed  Google Scholar 

  4. Leoncini G, Viazzi F, De Cosmo S, Russo G, Fioretto P, Pontremoli R (2020) Blood pressure reduction and RAAS inhibition in diabetic kidney disease: therapeutic potentials and limitations. J Nephrol 33(5):949–963. https://doi.org/10.1007/s40620-020-00803-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yarahmadi A, Shahrokhi SZ, Mostafavi-Pour Z, Azarpira N (2021) MicroRNAs in diabetic nephropathy: From molecular mechanisms to new therapeutic targets of treatment. Biochem Pharmacol 189:114301. https://doi.org/10.1016/j.bcp.2020.114301

    Article  CAS  PubMed  Google Scholar 

  6. Sankrityayan H, Kulkarni YA, Gaikwad AB (2019) Diabetic nephropathy: the regulatory interplay between epigenetics and microRNAs. Pharmacol Res 141:574–585. https://doi.org/10.1016/j.phrs.2019.01.043

    Article  CAS  PubMed  Google Scholar 

  7. Peters LJF, Floege J, Biessen EAL, Jankowski J, van der Vorst EPC (2020) MicroRNAs in chronic kidney disease: four candidates for clinical application. Int J Mol Sci 21(18). https://doi.org/10.3390/ijms21186547

  8. Gondaliya P, DasareJash APK, Tekade RK, Srivastava A, Kalia K (2020) miR-29b attenuates histone deacetylase-4 mediated podocyte dysfunction and renal fibrosis in diabetic nephropathy. J Diabetes Metab Disord 19(1):13–27. https://doi.org/10.1007/s40200-019-00469-0

    Article  CAS  PubMed  Google Scholar 

  9. Xing LN, Wang H, Yin PH, Liu YJ, Chi YF, Wang YM, Peng W (2014) Reduced mir-29b-3p expression up-regulate CDK6 and contributes to IgA nephropathy. Int J Clin Exp Med 7(12):5275–5281

    PubMed  PubMed Central  Google Scholar 

  10. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R, Zhang Y, Chan JC, Fu K, Marquez VE, Chen-Kiang S, Moscinski LC, Seto E, Dalton WS, Wright KL, Sotomayor E, Bhalla K, Tao J (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell 22(4):506–523. https://doi.org/10.1016/j.ccr.2012.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Z, Yu Z, Meng X, Yu P (2018) LncRNA LINC00968 accelerates the proliferation and fibrosis of diabetic nephropathy by epigenetically repressing p21 via recruiting EZH2. Biochem Biophys Res Commun 504(2):499–504. https://doi.org/10.1016/j.bbrc.2018.08.048

    Article  CAS  PubMed  Google Scholar 

  12. Komers R, Mar D, Denisenko O, Xu B, Oyama TT, Bomsztyk K (2013) Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes. Lab Invest 93(5):543–552. https://doi.org/10.1038/labinvest.2013.47

    Article  CAS  PubMed  Google Scholar 

  13. Wan J, Hou X, Zhou Z, Geng J, Tian J, Bai X, Nie J (2017) WT1 ameliorates podocyte injury via repression of EZH2/beta-catenin pathway in diabetic nephropathy. Free Radic Biol Med 108:280–299. https://doi.org/10.1016/j.freeradbiomed.2017.03.012

    Article  CAS  PubMed  Google Scholar 

  14. Zhou X, Zang X, Guan Y, Tolbert T, Zhao TC, Bayliss G, Zhuang S (2018) Targeting enhancer of zeste homolog 2 protects against acute kidney injury. Cell Death Dis 9(11):1067. https://doi.org/10.1038/s41419-018-1012-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li T, Yu C, Zhuang S (2021) Histone methyltransferase EZH2: a potential therapeutic target for kidney diseases. Front Physiol 12:640700. https://doi.org/10.3389/fphys.2021.640700

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Yu W, Xiong H, Yuan F (2022) Circ_0000181 regulates miR-667-5p/NLRC4 axis to promote pyroptosis progression in diabetic nephropathy. Sci Rep 12(1):11994. https://doi.org/10.1038/s41598-022-15607-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Zhao S, Zhu Y (2020) Long noncoding RNA growth arrest-specific transcript 5 alleviates renal fibrosis in diabetic nephropathy by downregulating matrix metalloproteinase 9 through recruitment of enhancer of zeste homolog 2. FASEB J 34(2):2703–2714. https://doi.org/10.1096/fj.201901380RR

    Article  CAS  PubMed  Google Scholar 

  18. Li HY, Oh YS, Choi JW, Jung JY, Jun HS (2017) Blocking lysophosphatidic acid receptor 1 signaling inhibits diabetic nephropathy in db/db mice. Kidney Int 91(6):1362–1373. https://doi.org/10.1016/j.kint.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  19. Chen H, Jin G (2021) Downregulation of Salusin-beta protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p. Bioengineered 12(1):6155–6165. https://doi.org/10.1080/21655979.2021.1972900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang S, Wang H, Liu Y, Yang W, Liu J, Han Y, Liu Y, Liu F, Sun L, Xiao L (2020) Tacrolimus ameliorates tubulointerstitial inflammation in diabetic nephropathy via inhibiting the NFATc1/TRPC6 pathway. J Cell Mol Med 24(17):9810–9824. https://doi.org/10.1111/jcmm.15562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo W, Chen X, Ye L, Chen X, Jia W, Zhao Y, Samorodov AV, Zhang Y, Hu X, Zhuang F, Qian J, Zheng C, Liang G, Wang Y (2021) Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: the role of TRAF6 in diabetic nephropathy. J Ethnopharmacol 268:113553. https://doi.org/10.1016/j.jep.2020.113553

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Li H (2020) MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3. Biosci Rep 40(4). 10.1042/BSR20193653

  23. Ji TT, Qi YH, Li XY, Tang B, Wang YK, Zheng PX, Li W, Qu X, Feng L, Bai SJ (2020) Loss of lncRNA MIAT ameliorates proliferation and fibrosis of diabetic nephropathy through reducing E2F3 expression. J Cell Mol Med 24(22):13314–13323. https://doi.org/10.1111/jcmm.15949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang Q, Wu F, Mi Y, Wang F, Cai K, Yang X, Zhang R, Liu L, Zhang Y, Wang Y, Wang X, Xu M, Gui Y, Li Q (2020) Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif 53(3):e12764. https://doi.org/10.1111/cpr.12764

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng T, Wang HY, Chen Y, Chen X, Wu ZL, Hu QY, Sun H (2022) Src activation aggravates podocyte injury in diabetic nephropathy via suppression of FUNDC1-mediated mitophagy. Front Pharmacol 13:897046. https://doi.org/10.3389/fphar.2022.897046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng Y, Cui Z, Liu J, Chen J, Tang S (2019) MicroRNA-29b-3p promotes human retinal microvascular endothelial cell apoptosis via Blocking SIRT1 in diabetic retinopathy. Front Physiol 10:1621. https://doi.org/10.3389/fphys.2019.01621

    Article  PubMed  Google Scholar 

  27. Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, Koh P, Thomas M, Jandeleit-Dahm K, Gregorevic P, Cooper ME, Kantharidis P (2012) Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol 23(2):252–265. https://doi.org/10.1681/ASN.2011010055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Al Dhaybi O, Bakris GL (2020) Non-steroidal mineralocorticoid antagonists: prospects for renoprotection in diabetic kidney disease. Diabetes Obes Metab 22(Suppl 1):69–76. https://doi.org/10.1111/dom.13983

    Article  CAS  PubMed  Google Scholar 

  29. Rudnicki M, Beckers A, Neuwirt H, Vandesompele J (2015) RNA expression signatures and posttranscriptional regulation in diabetic nephropathy. Nephrol Dial Transplant 30 Suppl 4: iv35–42. https://doi.org/10.1093/ndt/gfv079.

  30. Li YY, Xu QW, Xu PY, Li WM (2020) MSC-derived exosomal miR-34a/c-5p and miR-29b-3p improve intestinal barrier function by targeting the Snail/Claudins signaling pathway. Life Sci 257:118017. https://doi.org/10.1016/j.lfs.2020.118017

    Article  CAS  PubMed  Google Scholar 

  31. Drummond CA, Fan X, Haller ST, Kennedy DJ, Liu J, Tian J (2018) Na/K-ATPase signaling mediates miR-29b-3p regulation and cardiac fibrosis formation in mice with chronic kidney disease. PLoS One 13(5):e0197688. https://doi.org/10.1371/journal.pone.0197688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patel V, Noureddine L (2012) MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens 21(4):410–416. https://doi.org/10.1097/MNH.0b013e328354e559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi S, Song L, Yu H, Feng S, He J, Liu Y, He Y (2020) Knockdown of LncRNA-H19 ameliorates kidney fibrosis in diabetic mice by suppressing miR-29a-mediated EndMT. Front Pharmacol 11:586895. https://doi.org/10.3389/fphar.2020.586895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ebadi Z, Moradi N, Kazemi Fard T, Balochnejadmojarrad T, Chamani E, Fadaei R, Fallah S (2019) Captopril and Spironolactone can attenuate diabetic nephropathy in Wistar rats by targeting microRNA-192 and microRNA-29a/b/c. DNA Cell Biol 38(10):1134–1142. https://doi.org/10.1089/dna.2019.4732

    Article  CAS  PubMed  Google Scholar 

  35. Sun SF, Tang PMK, Feng M, Xiao J, Huang XR, Li P, Ma RCW, Lan HY (2018) Novel lncRNA Erbb4-IR promotes diabetic kidney injury in db/db mice by targeting miR-29b. Diabetes 67(4):731–744. https://doi.org/10.2337/db17-0816

    Article  CAS  PubMed  Google Scholar 

  36. Chen HY, Zhong X, Huang XR, Meng XM, You Y, Chung AC, Lan HY (2014) MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther 22(4):842–853. https://doi.org/10.1038/mt.2013.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stamato MA, Juli G, Romeo E, Ronchetti D, Arbitrio M, Caracciolo D, Neri A, Tagliaferri P, Tassone P, Amodio N (2017) Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma. Oncotarget 8(63):106527–106537. https://doi.org/10.18632/oncotarget.22507

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yin H, Wang Y, Wu Y, Zhang X, Zhang X, Liu J, Wang T, Fan J, Sun J, Yang A, Zhang R (2020) EZH2-mediated epigenetic silencing of miR-29/miR-30 targets LOXL4 and contributes to tumorigenesis, metastasis, and immune microenvironment remodeling in breast cancer. Theranostics 10(19):8494–8512. https://doi.org/10.7150/thno.44849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu DW, Zhang JH, Liu FX, Wang XT, Pan SK, Jiang DK, Zhao ZH, Liu ZS (2019) Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in diabetic nephropathy by upregulating FOXA1. Exp Mol Med 51(8):1–15. https://doi.org/10.1038/s12276-019-0259-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang C, Liu G, Yang H, Guo S, Wang H, Dong Z, Li X, Bai Y, Cheng Y (2021) MALAT1-mediated recruitment of the histone methyltransferase EZH2 to the microRNA-22 promoter leads to cardiomyocyte apoptosis in diabetic cardiomyopathy. Sci Total Environ 766:142191. https://doi.org/10.1016/j.scitotenv.2020.142191

    Article  CAS  PubMed  Google Scholar 

  41. Liang H, Huang Q, Liao MJ, Xu F, Zhang T, He J, Zhang L, Liu HZ (2019) EZH2 plays a crucial role in ischemia/reperfusion-induced acute kidney injury by regulating p38 signaling. Inflamm Res 68(4):325–336. https://doi.org/10.1007/s00011-019-01221-3

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, Chen Z, Weng X, Chen H, Du Y, Diao C, Liu X, Wang L (2020) Enhancer of zeste homolog 2 modulates oxidative stress-mediated pyroptosis in vitro and in a mouse kidney ischemia-reperfusion injury model. FASEB J 34(1):835–852. https://doi.org/10.1096/fj.201901816R

    Article  CAS  PubMed  Google Scholar 

  43. Zhou X, Xiong C, Tolbert E, Zhao T C, Bayliss G, Zhuang S (2018) Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J fj201800237R. https://doi.org/10.1096/fj.201800237R

  44. Das F, Bera A, Ghosh-Choudhury N, Sataranatarajan K, Kamat A, Kasinath BS, Choudhury GG (2021) High glucose-stimulated enhancer of zeste homolog-2 (EZH2) forces suppression of deptor to cause glomerular mesangial cell pathology. Cell Signal 86:110072. https://doi.org/10.1016/j.cellsig.2021.110072

    Article  CAS  PubMed  Google Scholar 

  45. Zhou X, Chen H, Li J, Shi Y, Zhuang S, Liu N (2022) The role and mechanism of lysine methyltransferase and arginine methyltransferase in kidney diseases. Front Pharmacol 13:885527. https://doi.org/10.3389/fphar.2022.885527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699. https://doi.org/10.1126/science.1165395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen G, Subedi K, Chakraborty S, Sharov A, Lu J, Kim J, Mi X, Wersto R, Sung MH, Weng NP (2018) Ezh2 regulates activation-induced CD8(+) T cell cycle progression via repressing Cdkn2a and Cdkn1c expression. Front Immunol 9:549. https://doi.org/10.3389/fimmu.2018.00549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dai X, Liao R, Liu C, Liu S, Huang H, Liu J, Jin T, Guo H, Zheng Z, Xia M, Ling W, Xiao Y (2021) Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy. Redox Biol 45:102033. https://doi.org/10.1016/j.redox.2021.102033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Kuang.

Ethics declarations

Ethical approval

This study of clinical samples and experimental animals obtained approval from the experimental animal ethics committee of the Fourth People's Hospital of Shenyang, Liaoning, China.

Informed consent

Informed consent of the patients and their families was obtained.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, D., Zhou, P. et al. microRNA-29b-3p attenuates diabetic nephropathy in mice by modifying EZH2. Hormones 22, 223–233 (2023). https://doi.org/10.1007/s42000-022-00426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-022-00426-2

Keywords

Navigation