Skip to main content

Advertisement

Log in

EZH2 plays a crucial role in ischemia/reperfusion-induced acute kidney injury by regulating p38 signaling

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Renal ischemia–reperfusion (IR)-induced acute kidney injury (AKI) remains a major challenge in clinic. The histone methyltransferases enhancer of zest homolog-2 (EZH2) is associated with the development of renal injury. However, the molecular mechanism has not been fully elucidated.

Materials

AKI in C57BL/6 mice was generated by renal IR.

Treatments

The 3-deazaneplanocin A (DZNeP), a selective EZH2 inhibitor, or vehicle was administrated in mice after IR. HK-2 cells were exposed to hypoxia-reoxygenation (H/R) stress.

Methods

Apoptosis was detected by TUNEL assay or flow cytometry. EZH2, caspase-3, p38, F4/80+ macrophages, and CD3+ T cells were examined by immunohistochemistry or Western blot. Tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, IL-6, and IL-18 were measured using RT-PCR.

Results

Mice treated with DZNeP exhibited less severe renal dysfunction and tubular injury following IR. EZH2 inhibition decreased apoptotic cells while reducing activation of caspase-3 in kidneys under IR condition. Moreover, EZH2 inhibition impaired the recruitment of CD3+ T cells and F4/80+ cells in kidneys with IR. Administration of DZNeP suppressed the production of TNF-α, MCP-1, IL-6, and IL-18 in IR-treated kidneys. Of note, EZH2 inhibition reduced p38 phosphorylation in kidneys after IR. In H/R-treated HK-2 cells, DZNeP treatment or EZH2 knockdown reduced apoptosis. EZH2 inhibition inactivated p38 resulting in reduction of active caspase-3 and proinflammatory molecules. By contrast, EZH2 overexpression induced p38 phosphorylation, caspase-3 activation, and production of proinflammatory molecules, which was reversed by SB203580.

Conclusions

EZH2 plays a crucial role in IR-induced AKI via modulation of p38 signaling. Targeting EZH2/p38 signaling pathway may offer novel strategies to protect kidneys from acute kidney injury induced by ischemia–reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hobson C, Ruchi R, Bihorac A. Perioperative acute kidney injury: risk factors and predictive strategies. Crit Care Clin. 2017;33(2):379–96.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meersch M, Schmidt C, Zarbock A. Perioperative Acute kidney injury: an under-recognized problem. Anesth Analg. 2017;125(4):1223–32.

    Article  PubMed  Google Scholar 

  3. Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10(4):193–207.

    Article  PubMed  CAS  Google Scholar 

  4. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 2017;92(5):1071–83.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Thurman JM. Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol. 2007;123(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  7. Ying Y, Kim J, Westphal SN, Long KE, Padanilam BJ. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 2014;25(12):2707–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.

    Article  PubMed  CAS  Google Scholar 

  9. Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):1391–401.

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Yan L, Zhang Z, Prado E, Fu L, Xu X, Du L. Epigenetic regulation and its therapeutic potential in pulmonary hypertension. Front Pharmacol. 2018;9:241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Stoll S, Wang C, Qiu H. DNA Methylation and Histone modification in hypertension. Int J Mol Sci. 2018; 19(4).

  12. Mar D, Gharib SA, Zager RA, Johnson A, Denisenko O, Bomsztyk K. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int. 2015;88(4):734–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jones BA, Varambally S, Arend RC. Histone methyltransferase EZH2: a therapeutic target for ovarian cancer. Mol Cancer Ther. 2018;17(3):591–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou X, Zang X, Guan Y, Tolbert T, Zhao TC, Bayliss G, Zhuang S. Targeting enhancer of zeste homolog 2 protects against acute kidney injury. Cell death disease. 2018;9(11):1067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Moore HM, Gonzalez ME, Toy KA, Cimino-Mathews A, Argani P, Kleer CG. EZH2 inhibition decreases p38 signaling and suppresses breast cancer motility and metastasis. Breast Cancer Res Treat. 2013;138(3):741–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cascio S, Faylo JL, Sciurba JC, Xue J, Ranganathan S, Lohmueller JJ, Beatty PL, Finn OJ. Abnormally glycosylated MUC1 establishes a positive feedback circuit of inflammatory cytokines, mediated by NF-kappaB p65 and EzH2, in colitis-associated cancer. Oncotarget. 2017;8(62):105284–98.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, Luo X, Mao C, Liu J, Yu T, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215(5):1365–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liang H, Liao M, Zhao W, Zheng X, Xu F, Wang H, Huang J. CXCL16/ROCK1 signaling pathway exacerbates acute kidney injury induced by ischemia–reperfusion. Biomed Pharmacother. 2018;98:347–56.

    Article  PubMed  CAS  Google Scholar 

  19. Jin X, Chen J, Hu Z, Chan L, Wang Y. Genetic deficiency of adiponectin protects against acute kidney injury. Kidney Int. 2013;83(4):604–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, Zhong JY, Yang CX, Zhang B. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol. 2017;812:18–27.

    Article  PubMed  CAS  Google Scholar 

  21. Liang H, Zhang Z, Yan J, Wang Y, Hu Z, Mitch WE, Wang Y. The IL-4 receptor alpha has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int. 2017;92(6):1433–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhou X, Zang X, Ponnusamy M, Masucci MV, Tolbert E, Gong R, Zhao TC, Liu N, Bayliss G, Dworkin LD, et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression. J Am Soc Nephrol. 2016;27(7):2092–108.

    Article  PubMed  CAS  Google Scholar 

  23. Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, Danesi R. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev. 2012;31(3–4):753–61.

    Article  PubMed  CAS  Google Scholar 

  24. Momparler RL, Cote S. Targeting of cancer stem cells by inhibitors of DNA and histone methylation. Expert Opin Investig Drugs. 2015;24(8):1031–43.

    Article  PubMed  CAS  Google Scholar 

  25. Yang Y, Zhang ZX, Lian D, Haig A, Bhattacharjee RN, Jevnikar AM. IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia–reperfusion injury. Kidney Int. 2015;87(2):396–408.

    Article  PubMed  CAS  Google Scholar 

  26. Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol. 2017;29(5):375–81.

    Article  PubMed  CAS  Google Scholar 

  27. Italiano A. Role of the EZH2 histone methyltransferase as a therapeutic target in cancer. Pharmacol Ther. 2016;165:26–31.

    Article  PubMed  CAS  Google Scholar 

  28. Safaei S, Baradaran B, Hagh MF, Alivand MR, Talebi M, Gharibi T, Solali S. Double sword role of EZH2 in leukemia. Biomed Pharmacother. 2018;98:626–35.

    Article  PubMed  CAS  Google Scholar 

  29. Yan KS, Lin CY, Liao TW, Peng CM, Lee SC, Liu YJ, Chan WP, Chou RH. EZH2 in cancer progression and potential application in cancer therapy: a friend or foe? Int J Mol Sci. 2017; 18(6).

  30. Zhou X, Xiong C, Tolbert E, Zhao TC, Bayliss G, Zhuang S. Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J. 2018:fj201800237R.

  31. Ortiz A, Justo P, Sanz A, Lorz C, Egido J. Targeting apoptosis in acute tubular injury. Biochem Pharmacol. 2003;66(8):1589–94.

    Article  PubMed  CAS  Google Scholar 

  32. Saikumar P, Venkatachalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol. 2003;23(6):511–21.

    Article  PubMed  CAS  Google Scholar 

  33. Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 2015;11(2):88–101.

    Article  PubMed  CAS  Google Scholar 

  34. Fukazawa K, Lee HT. Volatile anesthetics and AKI: risks, mechanisms, and a potential therapeutic window. J Am Soc Nephrol. 2014;25(5):884–92.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nishikawa H, Taniguchi Y, Matsumoto T, Arima N, Masaki M, Shimamura Y, Inoue K, Horino T, Fujimoto S, Ohko K, et al. Knockout of the interleukin-36 receptor protects against renal ischemia–reperfusion injury by reduction of proinflammatory cytokines. Kidney Int. 2018;93(3):599–614.

    Article  PubMed  CAS  Google Scholar 

  36. Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ. IL-18 contributes to renal damage after ischemia–reperfusion. J Am Soc Nephrol. 2008;19(12):2331–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. 2009;18(12):1893–905.

    Article  PubMed  CAS  Google Scholar 

  38. Peti W, Page R. Molecular basis of MAP kinase regulation. Protein Sci. 2013;22(12):1698–710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Guangdong Province (2018A030313613) and Guangdong Province Medical Science Technology Investigation Project of China (A2017032 and A2018016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Liang or Qiong Huang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Huang, Q., Liao, Mj. et al. EZH2 plays a crucial role in ischemia/reperfusion-induced acute kidney injury by regulating p38 signaling. Inflamm. Res. 68, 325–336 (2019). https://doi.org/10.1007/s00011-019-01221-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01221-3

Keywords

Navigation