Skip to main content
Log in

Determination of micromixing times in commercially available continuous-flow mixers: evaluation of the incorporation and interaction by exchange with the mean model

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

To understand and predict the effect of mixing in a mixer or reactor, characterization is essential. The Villermaux-Dushman system of competitive parallel reactions is one of the most frequently used methods to obtain details on the micromixing behavior in mixers and reactors. For quantitative information, a model can convert experimental data into a universal micromixing time, which can be used to compare set-ups and reaction conditions. Different modeling approaches have been developed over time and complicate the comparison of results with newfound micromixing times. In this work, these different modeling approaches are elaborated upon to show the significant differences that can arise between these models. Special attention goes out to a model for continuous-flow mixers, which operates differently and has different characteristics compared to mixing in conventional batch reactors. The volume fractions of the two phases being mixed are generally closer to one another in flow mixers, requiring adaptations in the experimental and modeling approach. Several models were tested, after which the interaction by exchange with the mean (IEM) model was selected. Using this model, micromixing times were determined for a variety of continuous-flow mixers under different operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C i :

Concentration of species i mol·L−1

f :

Activity coefficient -

g :

Growth function -

g s :

Incorporation law -

k :

Reaction rate constant s−1 or L·mol−1·s−1 or L4·mol−4·s−1

n i :

Moles of species i mol

R :

Reaction rate mol·L−1·s−1

t :

Time s

t m :

Micromixing time s

V :

Volume L

X s :

Segregation index -

Y :

Yield -

z :

Charge number -

α :

Volumetric ratio -

μ :

Ionic strength mol·L−1

References

  1. Nouri L, Legrand J, Benmalek N, Imerzoukene F, Yeddou A-R, Halet F (2008) Characterisation and comparison of the micromixing efficiency in torus and batch stirred reactors. Chem Eng J 142(1):78–86. https://doi.org/10.1016/j.cej.2008.01.030

    Article  CAS  Google Scholar 

  2. Akiti O, Armenante PM (2004) Experimentally-validated micromixing-based CFD model for fed-batch stirred-tank reactors. AIChE J 50(3):566–577. https://doi.org/10.1002/aic.10051

    Article  CAS  Google Scholar 

  3. Phillips R, Rohani S, Baldyga J (1999) Micromixing in a single-feed semi-batch precipitation process. AIChE J 45(1):82–92. https://doi.org/10.1002/aic.690450108

    Article  CAS  Google Scholar 

  4. Sambiagio C, Noël T (2020) Flow Photochemistry: Shine Some Light on Those Tubes! Trends Chem 2(2):92–106. https://doi.org/10.1016/j.trechm.2019.09.003

    Article  CAS  Google Scholar 

  5. Akwi FM, Watts P (2018) Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem Commun 54(99):13894–13928. https://doi.org/10.1039/C8CC07427E

    Article  CAS  Google Scholar 

  6. Holtze C, Boehling R (2022) Batch or flow chemistry? – a current industrial opinion on process selection. Curr Opin Chem Eng 36:100798. https://doi.org/10.1016/j.coche.2022.100798

    Article  Google Scholar 

  7. Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T (2016) Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 45(1):83–117. https://doi.org/10.1039/C5CS00447K

    Article  CAS  PubMed  Google Scholar 

  8. Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8–9):2479–2501. https://doi.org/10.1016/j.ces.2004.11.033

    Article  CAS  Google Scholar 

  9. Fernandez Rivas D, Kuhn S (2016) Synergy of Microfluidics and Ultrasound. Top. Curr. Chem. 374(5):70. https://doi.org/10.1007/s41061-016-0070-y

    Article  CAS  Google Scholar 

  10. Dong Z, Zondag SDA, Schmid M, Wen Z, Noël T (2022) A meso-scale ultrasonic milli-reactor enables gas–liquid-solid photocatalytic reactions in flow. Chem Eng J 428:130968. https://doi.org/10.1016/j.cej.2021.130968

    Article  CAS  Google Scholar 

  11. Taheri RA, Goodarzi V, Allahverdi A (2019) Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method. Micromachines 10(11):786. https://doi.org/10.3390/mi10110786

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aubin J, Ferrando M, Jiricny V (2010) Current methods for characterising mixing and flow in microchannels. Chem Eng Sci 65(6):2065–2093. https://doi.org/10.1016/j.ces.2009.12.001

    Article  CAS  Google Scholar 

  13. Ahmad Termizi SNA et al (2020) Computational Fluid Dynamics (CFD) Simulation on Mixing in T-Shaped Micromixer. IOP Conf. Ser. Mater. Sci. Eng. 932(1):012006. https://doi.org/10.1088/1757-899X/932/1/012006

    Article  Google Scholar 

  14. Ghanem A, Lemenand T, Della Valle D, Peerhossaini H (2014) Static mixers: Mechanisms, applications, and characterization methods – A review. Chem. Eng. Res. Des. 92(2):205–228. https://doi.org/10.1016/j.cherd.2013.07.013

    Article  CAS  Google Scholar 

  15. ManzanoMartínez AN, van Eeten KMP, Schouten JC, van der Schaaf J (2017) Micromixing in a Rotor-Stator Spinning Disc Reactor. Ind. Eng. Chem. Res. 56(45):13454–13460. https://doi.org/10.1021/acs.iecr.7b01324

    Article  CAS  Google Scholar 

  16. Reckamp JM et al (2017) Mixing Performance Evaluation for Commercially Available Micromixers Using Villermaux-Dushman Reaction Scheme with the Interaction by Exchange with the Mean Model. Org Process Res Dev 21(6):816–820. https://doi.org/10.1021/acs.oprd.6b00332

    Article  CAS  Google Scholar 

  17. Villermaux J, Falk L (1994) A generalized mixing model for initial contacting of reactive fluids. Chem Eng Sci 49(24):5127–5140. https://doi.org/10.1016/0009-2509(94)00303-3

    Article  CAS  Google Scholar 

  18. Kockmann N, Kiefer T, Engler M, Woias P (2006) Convective mixing and chemical reactions in microchannels with high flow rates. Sensors Actuators B Chem 117(2):495–508. https://doi.org/10.1016/j.snb.2006.01.004

    Article  CAS  Google Scholar 

  19. Monnier H, Wilhelm AM, Delmas H (2000) Effects of ultrasound on micromixing in flow cell. Chem Eng Sci 55(19):4009–4020. https://doi.org/10.1016/S0009-2509(00)00067-1

    Article  CAS  Google Scholar 

  20. Panić S, Loebbecke S, Tuercke T, Antes J, Bošković D (2004) Experimental approaches to a better understanding of mixing performance of microfluidic devices. Chem Eng J 101(1–3):409–419. https://doi.org/10.1016/j.cej.2003.10.026

    Article  CAS  Google Scholar 

  21. Commenge J-M, Falk L (2011) Villermaux–Dushman protocol for experimental characterization of micromixers. Chem Eng Process Process Intensif 50(10):979–990. https://doi.org/10.1016/j.cep.2011.06.006

    Article  CAS  Google Scholar 

  22. Fournier M-C, Falk L, Villermaux J (1996) A new parallel competing reaction system for assessing micromixing efficiency—Determination of micromixing time by a simple mixing model. Chem Eng Sci 51(23):5187–5192. https://doi.org/10.1016/S0009-2509(96)00340-5

    Article  CAS  Google Scholar 

  23. Falk L, Commenge J-M (2010) Performance comparison of micromixers. Chem Eng Sci 65(1):405–411. https://doi.org/10.1016/j.ces.2009.05.045

    Article  CAS  Google Scholar 

  24. Wenzel D, Górak A (2018) Review and analysis of micromixing in rotating packed beds. Chem Eng J 345:492–506. https://doi.org/10.1016/j.cej.2018.03.109

    Article  CAS  Google Scholar 

  25. Kölbl A, Kraut M, Dittmeyer R (2013) Kinetic investigation of the Dushman reaction at concentrations relevant to mixing studies in microstructured cyclone type mixers. Chem Eng Sci 101:454–460. https://doi.org/10.1016/j.ces.2013.07.008

    Article  CAS  Google Scholar 

  26. Arian E, Pauer W (2021) A comprehensive investigation of the incorporation model for micromixing time calculation. Chem Eng Res Des 175:296–308. https://doi.org/10.1016/j.cherd.2021.09.010

    Article  CAS  Google Scholar 

  27. Dolshanskiy W, Stepanyuk A, Arian E, Pauer W (2023) Residence time distribution and micromixing efficiency of a dynamic inline rotor–stator mixer. Chem Eng J 451:138555. https://doi.org/10.1016/j.cej.2022.138555

    Article  CAS  Google Scholar 

  28. Ruasse MF, Aubard J, Galland B, Adenier A (1986) Kinetic study of the fast halogen-trihalide ion equilibria in protic media by the Raman-laser temperature-jump technique. A non-diffusion-controlled ion-molecule reaction. J Phys Chem 90(18):4382–4388. https://doi.org/10.1021/j100409a034

    Article  CAS  Google Scholar 

  29. Gobert SRL, Kuhn S, Braeken L, Thomassen LCJ (2017) Characterization of Milli- and Microflow Reactors: Mixing Efficiency and Residence Time Distribution. Org Process Res Dev 21(4):531–542. https://doi.org/10.1021/acs.oprd.6b00359

    Article  CAS  Google Scholar 

  30. Wang K, Zhang H, Shen Y, Adamo A, Jensen KF (2018) Thermoformed fluoropolymer tubing for in-line mixing. React Chem Eng 3(5):707–713. https://doi.org/10.1039/C8RE00112J

    Article  CAS  Google Scholar 

  31. Nouri L, Abouda L, Legrand J (2014) Estimation of the micromixing time in the torus reactor by the application of the incorporation model. Chem Eng Process Process Intensif 78:37–43. https://doi.org/10.1016/j.cep.2014.02.004

    Article  CAS  Google Scholar 

  32. Yang K, Chu G, Shao L, Xiang Y, Zhang L, Chen J (2009) Micromixing Efficiency of Viscous Media in Micro-channel Reactor. Chinese J Chem Eng 17(4):546–551. https://doi.org/10.1016/S1004-9541(08)60243-8

    Article  CAS  Google Scholar 

  33. Yang H-J, Chu G-W, Zhang J-W, Shen Z-G, Chen J-F (2005) Micromixing Efficiency in a Rotating Packed Bed: Experiments and Simulation. Ind Eng Chem Res 44(20):7730–7737. https://doi.org/10.1021/ie0503646

    Article  CAS  Google Scholar 

  34. Wenzel D, Nolte K, Górak A (2019) Reactive mixing in rotating packed beds: On the packing’s role and mixing modeling. Chem Eng Process - Process Intensif 143:107596. https://doi.org/10.1016/j.cep.2019.107596

    Article  CAS  Google Scholar 

  35. Arian E, Pauer W (2021) Contributions to the kinetics of the iodide–iodate test reaction for micromixing time calculation with extended incorporation models. Chem Eng Sci 237:116549. https://doi.org/10.1016/J.CES.2021.116549

    Article  CAS  Google Scholar 

  36. ManzanoMartı́nez AN, Haase AS, Assirelli M, van der Schaaf J (2020) Alternative Kinetic Model of the Iodide-Iodate Reaction for Its Use in Micromixing Investigations. Ind. Eng. Chem. Res. 59(49):21359–21370. https://doi.org/10.1021/acs.iecr.0c04901

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen P. L. Kuijpers.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuurmans, J.H.A., Peeters, M., Dorbec, M. et al. Determination of micromixing times in commercially available continuous-flow mixers: evaluation of the incorporation and interaction by exchange with the mean model. J Flow Chem 14, 33–42 (2024). https://doi.org/10.1007/s41981-024-00321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-024-00321-4

Keywords

Navigation