Skip to main content
Log in

Vanishing Hachtroudi Curvature and Local Equivalence to the Heisenberg Pseudosphere

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

To any completely integrable second-order system of real or complex partial differential equations:

$$\begin{aligned} y_{x^{k_1}x^{k_2}} = F_{k_1,k_2} \left( x^1,\dots ,x^n,\,y,\,y_{x^1},\ldots ,y_{x^n} \right) \end{aligned}$$

with \(1 \leqslant k_1,\, k_2 \leqslant n\) and with \(F_{ k_1, k_2} = F_{ k_2, k_1}\) in \(\underline{n \geqslant 2}\) independent variables \((x^1, \ldots , x^n)\) and in one dependent variable y, Mohsen Hachtroudi associated in 1937 a normal projective (Cartan) connection, and he computed its curvature. By means of a natural transfer of jet polynomials to the associated submanifold of solutions, what the vanishing of the Hachtroudi curvature gives can be precisely translated to characterize when both families of Segre varieties and of conjugate Segre varieties associated to a Levi nondegenerate real analytic hypersurface M in \(\mathbb {C}^n\) (\(n \geqslant 3\)) can be straightened to be affine complex (conjugate) lines. In continuation to a previous paper devoted to the quite distinct \(\mathbb {C}^2\)-case, this then characterizes in an effective way those hypersurfaces of \(\mathbb {C}^{n+1}\) in higher complex dimension \(n + 1\geqslant 3\) that are locally biholomorphic to a piece of the \((2n + 1)\)-dimensional Heisenberg quadric, without any special assumption on their defining equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This process appears for instance in the references [1, 4, 8, 10, 20].

  2. We will be very brief here, the reader being referred to [20, 22] for the general theoretical considerations.

  3.   We put a minus sign in front of y(0) so as to match up with our choice of complex defining equation \(w = - \, \overline{ w} + \textsf {O} ( 2)\).

  4. Much more theoretical information is provided in [20].

  5. Remind that, to differentiate a determinant, one should differentiate separately each column once and then sum all the obtained terms.

References

  1. Bièche, C.: Le problème d’équivalence locale pour un système scalaire complet d’équations aux dérivées partielles d’ordre deux à \(n\) variables indépendantes. Annales de la Faculté des Sciences de Toulouse XVI(1), 1–36 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Boggess, A.: CR manifolds and the tangential Cauchy–Riemann complex. Studies in Advanced Mathematics, pp. xviii+364. CRC Press, Boca Raton (1991)

  3. Cartan, É.: Sur les variétés à connexion projective. Bull. Soc. Math. France 52, 205–241 (1924)

    Article  MathSciNet  Google Scholar 

  4. Chern, S.-S.: On the projective structure of a real hypersurface in \(\mathbb{C}^{n+1}\). Math. Scand. 36, 74–82 (1975)

    Article  MathSciNet  Google Scholar 

  5. Chern, S.S., Moser, J.K.: Real hypersurfaces in complex manifolds. Acta Math. 133(2), 219–271 (1974)

    Article  MathSciNet  Google Scholar 

  6. Chirka, E.M.: An introduction to the geometry of CR manifolds (Russian). Uspekhi Mat. Nauk 46(1) (277), 81–164, 240 (1991) (Translation in Russ. Math. Surv. 46(1), 95–197 (1991))

  7. Diederich, K., Webster, S.M.: A reflection principle for degenerate real hypersurfaces. Duke Math. J. 47(4), 835–843 (1980)

    Article  MathSciNet  Google Scholar 

  8. Engel, F., Lie, S.: Theorie der transformationsgruppen. Erster Abschnitt. Unter Mitwirkung von Dr. Friedrich Engel, bearbeitet von Sophus Lie. B.G. Teubner, Leipzig (1888) (Reprinted by Chelsea Publishing Co., New York (1970))

  9. Faran, J.: Segre families and real hypersurfaces. Invent. Math. 60(2), 135–172 (1980)

    Article  MathSciNet  Google Scholar 

  10. Hachtroudi, M.: Les espaces d’éléments à connexion projective normale, Actualités Scientifiques et Industrielles, vol. 565. Paris, Hermann (1937)

  11. Isaev, A.V.: Zero CR-curvature equations for rigid and tube hypersurfaces. Complex Var. Elliptic Equ. 54(3–4), 317–344 (2009)

    Article  MathSciNet  Google Scholar 

  12. Engel, F., Lie, S., Merker, J. (eds.): Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation, pp. xv+643. Springer, Berlin (2015). arXiv:1003.3202

  13. Merker, J.: Convergence of formal biholomorphisms between minimal holomorphically nondegenerate real analytic hypersurfaces. Int. J. Math. Math. Sci. 26(5), 281–302 (2001)

    Article  MathSciNet  Google Scholar 

  14. Merker, J.: On the partial algebraicity of holomorphic mappings between real algebraic sets. Bull. Soc. Math. France 129(3), 547–591 (2001)

    Article  MathSciNet  Google Scholar 

  15. Merker, J.: On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle. Ann. Inst. Fourier (Grenoble) 52(5), 1443–1523 (2002)

    Article  MathSciNet  Google Scholar 

  16. Merker, J.: On the local geometry of generic submanifolds of \(\mathbb{C} ^n\) and the analytic reflection principle. J. Math. Sci. (N. Y.) 125(6), 751–824 (2005)

    Article  MathSciNet  Google Scholar 

  17. Merker, J.: Étude de la régularité analytique de l’application de réflexion CR formelle. Annales Fac. Sci. Toulouse XIV(2), 215–330 (2005)

    Article  Google Scholar 

  18. Merker, J.: Explicit differential characterization of the Newtonian free particle system in \(m\geqslant 2\) dependent variables. Acta Mathematicæ Applicandæ 92(2), 125–207 (2006)

    Article  MathSciNet  Google Scholar 

  19. Merker, J., Porten, E.: Holomorphic extension of CR functions, envelopes of holomorphy and removable singularities. Int. Math. Res. Surv. 2006, Article ID 28295, 287

  20. Merker, J.: Lie symmetries of partial differential equations and CR geometry. J. Math. Sci. (N.Y.) 154, 817–922 (2008). arXiv:math/0703130

    Article  MathSciNet  Google Scholar 

  21. Merker, J.: Sophus Lie, Friedrich Engel et le problème de Riemann–Helmholtz, pp. xxiii+325. Hermann Éditeurs, Paris (2010). arXiv:0910.0801

  22. Merker, J.: Nonrigid spherical real analytic hypersurfaces in \(\mathbb{C}^2\). Complex Var. Elliptic Equ. 55(12), 1155–1182 (2010). arXiv:0910.1694

    Article  MathSciNet  Google Scholar 

  23. Merker, J.: On propagation of sphericity of real analytic hypersurfaces across Levi degenerate loci. J. Complex Anal. Art. ID 1314874, 8 (2017)

  24. Sabzevari, M.: On the maximum conjecture. Forum Math. 30(6), 1599–1608 (2018)

    Article  MathSciNet  Google Scholar 

  25. Sabzevari, M.: Moduli spaces of model real submanifolds: two alternative approaches. Sci. China Math. 58(11), 2261–2278 (2015)

    Article  MathSciNet  Google Scholar 

  26. Sabzevari, M.: Biholomorphic equivalence to totally nondegenerate model CR manifolds. Ann. Mat. Pura Appl. (4) 198(4), 1121–1163 (2019)

    Article  MathSciNet  Google Scholar 

  27. Segre, B.: Intorno al problema di Poincaré della rappresentazione pseudoconforme. Rend. Acc. Lincei, VI, Ser. 13, 676–683 (1931)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Merker.

Additional information

Communicated by Rahim Zaare-Nahandi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merker, J. Vanishing Hachtroudi Curvature and Local Equivalence to the Heisenberg Pseudosphere. Bull. Iran. Math. Soc. 47, 1775–1792 (2021). https://doi.org/10.1007/s41980-020-00471-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-020-00471-w

Keywords

Mathematics Subject Classification

Navigation