Skip to main content
Log in

Characterization of the Newtonian Free Particle System in \(m\geqslant 2\) Dependent Variables

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We treat the problem of linearizability of a system of second order ordinary differential equations. The criterion we provide has applications to nonlinear Newtonian mechanics, especially in three-dimensional space. Let \({\mathbb K}={\mathbb R}\) or \({\mathbb C}\), let \(x \in {\mathbb K}\), let \(m\geqslant 2\), let \(y:=(y^1,\ldots,y^m)\in {\mathbb K}^m\) and let

$$y_{xx}^1=F^1\left(x, y, y_x\right),\ldots\dots,y_{xx}^m=F^m\left( x,y,y_x \right),$$

be a collection of m analytic second order ordinary differential equations, in general nonlinear. We obtain a new and applicable necessary and sufficient condition in order that this system is equivalent, under a point transformation

$$(x, y^1,\dots, y^m) \mapsto \left( X(x,y), Y^1(x,y),\dots, Y^m(x, y)\right),$$

to the Newtonian free particle system \(Y^{1}_{{XX}} = \dots = Y^{m}_{{XX}} = 0\).

Strikingly, the explicit differential system that we obtain is of first order in the case \(m\geqslant 2\), whereas according to a classical result due to Lie, it is of second order the case of a single equation \((m=1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin Heidelberg New York (1989)

    MATH  Google Scholar 

  2. Cartan, É.: Sur les variétés à connexion projective. Bull. Soc. Math. France 52, 205–241 (1924)

    MathSciNet  MATH  Google Scholar 

  3. Chern, S.-S.: Sur la géométrie d’un système d’équations différentielles du second ordre. Bull. Sci. Math. 63, 206–212 (1939)

    MathSciNet  MATH  Google Scholar 

  4. Crampin, M., Martínez, E., Sarlet, W.: Linear connections for systems of second-order ordinary differential equations. Ann. Inst. H. Poincaré, Phys. Théor. 65(2), 223–249 (1996)

    MATH  Google Scholar 

  5. Doubrov, B.: Contact invariants of ordinary differential equations. RIMS Kokyuroku 1150, 105–113 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Dridi, R., Neut, S., Petitot, M.: Élie Cartan’s geometrical vision or how to avoid expression swell, arxiv.org/abs/math.DG/0504203

  7. Fels, M.: The equivalence problem for systems of second-order ordinary differential equations. Proc. London Math. Soc. 71(2), 221–240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gardner, R.B.: The method of equivalence and its applications. CBMS-NSF Regional Conference Series in Applied Mathematics vol 58, pp. 127 SIAM, Philadelphia (1989)

    Google Scholar 

  9. Gaussier, H., Merker, J.: Symmetries of partial differential equations. J. Korean Math. Soc. 40(3), 517–561 (2003)

    MathSciNet  MATH  Google Scholar 

  10. González Gascón, F., González López, A.: Symmetries of differential equations, IV. J. Math. Phys. 24, 2006–2021 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. González López, A.: Symmetries of linear systems of second order differential equations. J. Math. Phys. 29, 1097–1105 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. González López, A., Kamran, N., Olver, P.J.: Lie algebras of vector fields in the real plane. Proc. London Math. Soc. 64, 339–368 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grissom, C., Thompson, G., Wilkens, G.: Linearization of second order ordinary differential equations via Cartan’s equivalence method. J. Differential Equations 77(1), 1–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grossman, D.A.: Torsion-free path geometries and integrable second order ode systems. Selecta Math., New. Ser. 6(4), 399–442 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hachtroudi, M.: Les espaces d’éléments à connexion projective normale. Actualités Scientifiques et Industrielles 565. Hermann & Cie, Paris (1937)

    Google Scholar 

  16. Hawkins, T.: Emergence of the Theory of Lie Groups. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  17. Hsu, L., Kamran, N.: Classification of second order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries. Proc. London Math. Soc. 58(3), 387–416 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ibragimov, N.H.: Group analysis of ordinary differential equations and the invariance principle in mathematical physics. Russian Math. Surveys 47(4), 89–156 (1992)

    Article  MathSciNet  Google Scholar 

  19. Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations, Mathematical Methods in Practice. Wiley, Chichester (1999) (xviii+347 pp)

    Google Scholar 

  20. Leach, P.G.L.: \({\rm Sl}(3, \mathbb{R})\) and the repulsive oscillator. J. Phys. A. 13, 1991–2000 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lie, S.: Theorie der Transformationsgruppen. Math. Ann. 16, 441–528 (1880); translated in English and commented In: Ackerman, M., Hermann, R.: Sophus Lie’s 1880 Transformation Group paper, Math. Sci. Press, Brookline, Mass. (1975)

    Article  MathSciNet  Google Scholar 

  22. Lie, S.: Klassifikation und Integration vo gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestaten I-IV. In: Gesammelte Abhandlungen, vol. 5, pp. 240–310, 362–427, 432–448. B.G. Teubner, Leipzig (1924)

  23. Mahomed, F.M., Soh, C.W.: Linearization criteria for a system of second-order differential equations. Internat J. Non.-Linear Mech. 36(4), 671–677 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mardare, S.: On isometric immersions of a Riemannian space under a weak regularity assumption. C. R. Acad. Sci. Paris, Sér. I. 337, 785–790 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Merker, J.: Explicit differential characterization of PDE systems pointwise equivalent to \(Y_{ X^{j_1} X^{ j_2} } = 0\), \(1\leqslant j_1, j_2 \leqslant n\geqslant 2\), arxiv.org/abs/math.DG/0411637

  26. Neut, S.: Implantation et nouvelles applications de la méthode d’équivalence d’Élie Cartan, Thèse, Université Lille 1, October 2003

  27. Nurowsky, P., Sparling, G.A.J.: 3-dimensional Cauchy-Riemann structures and 2nd order ordinary differential equations, e-print arXiv:math.DG/0306331

  28. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin Heidelberg New York (1986)(xxvi+497 pp.)

    MATH  Google Scholar 

  29. Olver, P.J.: Equivalence, Invariance and Symmetries. Cambridge University Press, Cambridge (1995)(xvi+525 pp)

    Google Scholar 

  30. Sternberg, S.: Differential Geometry. Chelsea, New York (1982)

    Google Scholar 

  31. Stormark, O.: Lie’s structural approach to PDE systems. In: Encyclopædia of Mathematics and its Applications, vol. 80. Cambridge University Press, Cambridge (2000)(xv+572 pp)

    Google Scholar 

  32. Tresse, A.: Détermination des Invariants Ponctuels de l’équation Différentielle du Second Ordre y′′=ω(x,y,y′). Hirzel, Leipzig (1896)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Merker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merker, J. Characterization of the Newtonian Free Particle System in \(m\geqslant 2\) Dependent Variables. Acta Appl Math 92, 125–207 (2006). https://doi.org/10.1007/s10440-006-9064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-006-9064-z

Key words

Mathematics Subject Classifications (2000)

Navigation