Skip to main content

Advertisement

Log in

Spatio-temporal Investigation of the Urban Thermal Comfort in Khulna City and Surrounding Areas

  • RESEARCH
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

Rapid urbanization is posing a serious threat to high-density urban areas worldwide, particularly in developing countries, with urban thermal environment degradation becoming an impending concern. Such dreadful climatic events force these cities to examine and monitor the spatial variation of the microscale thermal environment in and around the city. Our study aimed to analyze the spatiotemporal variation of urban thermal comfort in the Khulna Development Authority (KDA) area, utilizing the Urban Thermal Field Variance Index (UTFVI). The results indicate a worsening trend in urban thermal comfort, with the land surface temperature (LST) rising by approximately 4.75℃ between 2009 and 2020. During the same time, the minimum and maximum LST increased by 4.85℃ and 5.85℃, respectively, and the Urban Heat Island (UHI) increased by approximately 10%. We also found a strong positive correlation between multiple spectral indices and LST. Our analysis of the built-up area and vegetation indices showed an opposing trend, establishing a gradual decline in vegetation coverage and an increase in building footprint as the apparent causes of the temperature increase. This study's findings regarding the degradation of the thermal environment will guide policymakers to take action and implement measures to mitigate the effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Most of the data is open source, and the sources are mentioned in the manuscript. The data used in this research can also be found upon request.

References

  1. Grimm NB et al (2008) Global change and the ecology of cities. Science 319(5864):756–760. https://doi.org/10.1126/science.1150195

    Article  Google Scholar 

  2. United Nations Department of Economic and Social Affairs Population Division (UNDESA) (2019) World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations. https://population.un.org/wup/

  3. Montgomery MR (2008) The urban transformation of the developing world. Science 319(5864):761–764. https://doi.org/10.1126/science.1153012

    Article  Google Scholar 

  4. Gao J, O’Neill BC (2020) Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat Commun 11(1):2302. https://doi.org/10.1038/s41467-020-15788-7

    Article  Google Scholar 

  5. Chen L, Frauenfeld OW (2016) Impacts of urbanization on future climate in China. Clim Dyn 47(1–2):345–357. https://doi.org/10.1007/s00382-015-2840-6

    Article  Google Scholar 

  6. Huang K, Li X, Liu X, Seto KC (2019) Projecting global urban land expansion and heat island intensification through 2050. Environ Res Lett 14(11):114037. https://doi.org/10.1088/1748-9326/ab4b71

    Article  Google Scholar 

  7. Perkins-Kirkpatrick SE, Gibson PB (2017) Changes in regional heatwave characteristics as a function of increasing global temperature. Sci Rep 7(1):12256. https://doi.org/10.1038/s41598-017-12520-2

    Article  Google Scholar 

  8. Matthews TKR, Wilby RL, Murphy C (2017) Communicating the deadly consequences of global warming for human heat stress. Proc Natl Acad Sci 114(15):3861–3866. https://doi.org/10.1073/pnas.1617526114

    Article  Google Scholar 

  9. Im E-S, Pal JS, Eltahir EAB (2017) Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci Adv 3(8):e1603322. https://doi.org/10.1126/sciadv.1603322

    Article  Google Scholar 

  10. Watts N et al (2021) The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet 397(10269):129–170. https://doi.org/10.1016/S0140-6736(20)32290-X

    Article  Google Scholar 

  11. Vicedo-Cabrera AM et al (2021) The burden of heat-related mortality attributable to recent human-induced climate change. Nat Clim Change 11(6):492–500. https://doi.org/10.1038/s41558-021-01058-x

    Article  Google Scholar 

  12. Saeed F, Schleussner C, Ashfaq M (2021) Deadly heat stress to become commonplace across South Asia Already at 1.5°C of global warming. Geophys Res Lett 48(7). https://doi.org/10.1029/2020GL091191

  13. Nissan H, Burkart K, Coughlan de Perez E, Van Aalst M, Mason S (2017) Defining and predicting heat waves in Bangladesh. J Appl Meteorol Climatol 56(10):2653–2670. https://doi.org/10.1175/JAMC-D-17-0035.1

    Article  Google Scholar 

  14. Dewan A, Kiselev G, Botje D, Mahmud GI, Bhuian MdH, Hassan QK (2021) Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustain Cities Soc 71:102926. https://doi.org/10.1016/j.scs.2021.102926

    Article  Google Scholar 

  15. Islam MdD, Chakraborty T, Alam MdS, Islam KS (2019) Urban heat island effect analysis using integrated geospatial techniques: A case study on Khulna city, Bangladesh. In: International Conference on Climate Change (ICCC-2019), Dhaka, Bangladesh

  16. Rahman MH, Chakraborty T, Alam MdS (2020) Exploring the effect of biophysical composition on land surface temperature to identify urban heat clusters using remote sensing technique: A case study on Dhaka city, Bangladesh. J Bangladesh Inst Plan 13:153–167

  17. Burkart K et al (2014) The effects of season and meteorology on human mortality in tropical climates: a systematic review. Trans R Soc Trop Med Hyg 108(7):393–401. https://doi.org/10.1093/trstmh/tru055

    Article  Google Scholar 

  18. “Bangladesh 6th worst extreme weather-affected country, Retrieved from:,” The Daily Star, une 2017. [Online]. Available: https://www.thedailystar.net/environment/bangladesh-6th-worst-extreme-weather-affected-country-global-climate-change-risk-index-2017-1418197. Accessed 20 Jan 2023

  19. Burkart K, Breitner S, Schneider A, Khan Md. MH, Krämer A, Endlicher W (2014) An analysis of heat effects in different subpopulations of Bangladesh. Int J Biometeorol 58(2):227–237. https://doi.org/10.1007/s00484-013-0668-5

    Article  Google Scholar 

  20. Bhuiyan M, Hossain M (2020) Bangladesh lost 18.2bn work hours due to heat in 2019. The Business Standard. [Online]. Available: https://www.tbsnews.net/environment/climate-change/bangladesh-lost-182bn-work-hours-due-heat-2019-167362. Accessed 15 Dec 2022

  21. Gazi Md. Y, Rahman Md. Z, Uddin Md. M, Rahman FMA (2021) Spatio-temporal dynamic land cover changes and their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh. GeoJournal 86(5):2119–2134. https://doi.org/10.1007/s10708-020-10178-4

    Article  Google Scholar 

  22. Mourshed M (2011) The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh. Appl Energy 88(11):3737–3746. https://doi.org/10.1016/j.apenergy.2011.05.024

    Article  Google Scholar 

  23. International Institute for Environment and Development (IIED) (2009) Climate change and the urban poor. Risk and resilience in 15 of the world’s most vulnerable cities. [Online]. Available: https://pubs.iied.org/g02597. Accessed 15 Dec 2022

  24. Alam Md. S, Chakraborty T, Islam Md. D (2019) Community Resilience of Urban Slums to Climate Change Induced Events: A Case Study of Five Major Slum in Khulna City, Bangladesh. In: International Conference on Climate Change (ICCC-2019), Dhaka, Bangladesh, Dhaka, Bangladesh

  25. Fattah Md. A, Morshed SR, Morshed SY (2021) Impacts of land use-based carbon emission pattern on surface temperature dynamics: Experience from the urban and suburban areas of Khulna, Bangladesh. Remote Sens Appl Soc Environ 22:100508. https://doi.org/10.1016/j.rsase.2021.100508

    Article  Google Scholar 

  26. Ali SA, Parvin F, Ahmad A (2022) Retrieval of Land Surface temperature from Landsat 8 OLI and TIRS: a comparative analysis between radiative transfer equation-based method and split-window algorithm. Remote Sens Earth Syst Sci. https://doi.org/10.1007/s41976-022-00079-0

    Article  Google Scholar 

  27. Hang HT, Rahman A (2018) Characterization of thermal environment over heterogeneous surface of National Capital Region (NCR), India using LANDSAT-8 sensor for regional planning studies. Urban Clim 24:1–18. https://doi.org/10.1016/j.uclim.2018.01.001

    Article  Google Scholar 

  28. Kumari B et al (2018) Satellite-driven land surface temperature (LST) Using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sens Earth Syst Sci 1(3–4):63–78. https://doi.org/10.1007/s41976-018-0004-2

    Article  Google Scholar 

  29. Deb C, Ramachandraiah (2010) The significance of Physiological Equivalent Temperature (PET) in outdoor thermal comfort studies. Int J Eng Sci Technol 2(7):2825–2828

    Google Scholar 

  30. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43(2):76–84. https://doi.org/10.1007/s004840050119

    Article  Google Scholar 

  31. Kakon AN, Mishima N, Kojima S (2009) Simulation of the urban thermal comfort in a high density tropical city: Analysis of the proposed urban construction rules for Dhaka, Bangladesh. Build Simul 2(4):291. https://doi.org/10.1007/s12273-009-9321-y

    Article  Google Scholar 

  32. Abdel-Ghany AM, Al-Helal IM, Shady MR (2013) Human thermal comfort and heat stress in an outdoor urban arid environment: a case study. Adv Meteorol 2013:1–7. https://doi.org/10.1155/2013/693541

    Article  Google Scholar 

  33. Willett KM, Sherwood S (2012) Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature: exceedance of heat index thresholds for 15 regions. Int J Climatol 32(2):161–177. https://doi.org/10.1002/joc.2257

    Article  Google Scholar 

  34. Kant Y, Azim S, Mitra D (2018) Analyzing the influence of urban growth on thermal environment through demographic, environmental, and physical parameters in Bangladesh. In: Vadrevu KP, Ohara T, Justice C (eds) Land-atmospheric research applications in South and Southeast Asia. Springer International Publishing, Cham, pp 613–639. https://doi.org/10.1007/978-3-319-67474-2_27 (Springer Remote Sensing/Photogrammetry)

    Chapter  Google Scholar 

  35. Park S, Tuller SE, Jo M (2014) Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc Urban Plan 125:146–155. https://doi.org/10.1016/j.landurbplan.2014.02.014

    Article  Google Scholar 

  36. Sharma R, Pradhan L, Kumari M, Bhattacharya P (2021) Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Clim 35:100751. https://doi.org/10.1016/j.uclim.2020.100751

    Article  Google Scholar 

  37. Guha S (2017) Dynamic analysis and ecological evaluation of urban heat islands in Raipur city, India. J Appl Remote Sens 11(03):1. https://doi.org/10.1117/1.JRS.11.036020

    Article  Google Scholar 

  38. Ahmed S (2018) Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques. Egypt J Remote Sens Space Sci 21(1):15–25. https://doi.org/10.1016/j.ejrs.2017.08.001

    Article  Google Scholar 

  39. Naeem S, Cao C, Waqar MM, Wei C, Acharya BK (2018) Vegetation role in controlling the ecoenvironmental conditions for sustainable urban environments: a comparison of Beijing and Islamabad. J Appl Remote Sens 12(01):1. https://doi.org/10.1117/1.JRS.12.016013

    Article  Google Scholar 

  40. Nguyen T, Lin T-H, Chan H-P (2019) The environmental effects of urban development in Hanoi, Vietnam from satellite and meteorological observations from 1999–2016. Sustainability 11(6):1768. https://doi.org/10.3390/su11061768

    Article  Google Scholar 

  41. Leya RS, Jodder PK, Rahaman KR, Chowdhury MdA, Parida D, Islam MS (2022) Spatial variations of urban heat island development in Khulna City, Bangladesh: implications for urban planning and development. Earth Syst Environ 6(4):865–884. https://doi.org/10.1007/s41748-022-00309-x

    Article  Google Scholar 

  42. Chakraborty T, Alam Md. S, Islam Md. D (2019) Land cover classification from multispectral remote sensing image using K-Nearest neighbor, deep neural network, decision tree and SVM algorithms: A machine learning-based comparison approach,” presented at the 1st International Conference on Urban and Regional Planning-2019, Dhaka, Bangladesh: Bangladesh Institute of Planners

  43. Alam MdS, Mondal M (2019) Assessment of sanitation service quality in urban slums of Khulna city based on SERVQUAL and AHP model: A case study of railway slum, Khulna, Bangladesh. J Urban Manag 8(1):20–27. https://doi.org/10.1016/j.jum.2018.08.002

    Article  Google Scholar 

  44. Fattah MdA, Morshed SR, Morshed SY (2021) Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature. SN Appl Sci 3(3):359. https://doi.org/10.1007/s42452-021-04351-8

    Article  Google Scholar 

  45. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5(1):180214. https://doi.org/10.1038/sdata.2018.214

    Article  Google Scholar 

  46. Rahman MdR, Lateh H (2016) Meteorological drought in Bangladesh: assessing, analysing and hazard mapping using SPI, GIS and monthly rainfall data. Environ Earth Sci 75(12):1026. https://doi.org/10.1007/s12665-016-5829-5

    Article  Google Scholar 

  47. Kafy A-A, Rahman Md. S, Faisal A-A, Hasan MM, Islam M (2020) Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sens Appl Soc Environ 18:100314. https://doi.org/10.1016/j.rsase.2020.100314

    Article  Google Scholar 

  48. Halder B, Karimi A, Mohammad P, Bandyopadhyay J, Brown RD, Yaseen ZM (2022) Investigating the relationship between land alteration and the urban heat island of Seville city using multi-temporal Landsat data. Theor Appl Climatol 150(1–2):613–635. https://doi.org/10.1007/s00704-022-04180-8

    Article  Google Scholar 

  49. Kriegler FJ, Malila WA, Nalepka RF, Richardson W (1969) Preprocessing Transformations and Their Effects on Multispectral Recognition. p. 97. Accessed: May 08, 2022. [Online]. Available: https://ui.adsabs.harvard.edu/abs/1969rse..conf...97K. Accessed 8 May 2022

  50. Huang S, Tang L, Hupy JP, Wang Y, Shao G (2021) A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J For Res 32(1):1–6. https://doi.org/10.1007/s11676-020-01155-1

    Article  Google Scholar 

  51. Roy DP et al (2014) Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172. https://doi.org/10.1016/j.rse.2014.02.001

    Article  Google Scholar 

  52. Gao B (1996) NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266. https://doi.org/10.1016/S0034-4257(96)00067-3

    Article  Google Scholar 

  53. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594. https://doi.org/10.1080/01431160304987

    Article  Google Scholar 

  54. Mathew A, P S, Khandelwal S (2022) Investigating the contrast diurnal relationship of land surface temperatures with various surface parameters represent vegetation, soil, water, and urbanization over Ahmedabad city in India. Energy Nexus 5:100044. https://doi.org/10.1016/j.nexus.2022.100044

    Article  Google Scholar 

  55. Zhao H, Chen X (2005) Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In:Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05., Seoul, Korea: IEEE, pp 1666–1668. https://doi.org/10.1109/IGARSS.2005.1526319

  56. Liu H, Weng Q (2012) Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sens Environ 117:57–71. https://doi.org/10.1016/j.rse.2011.06.023

    Article  Google Scholar 

  57. Liu L, Zhang Y (2011) Urban heat island analysis using the Landsat TM data and ASTER data: a case study in Hong Kong. Remote Sens 3(7):1535–1552. https://doi.org/10.3390/rs3071535

    Article  Google Scholar 

  58. Roy S et al (2020) Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data. Urban Clim 32:100593. https://doi.org/10.1016/j.uclim.2020.100593

    Article  Google Scholar 

  59. Talukdar S et al (2020) Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sens 12(7):1135. https://doi.org/10.3390/rs12071135

    Article  Google Scholar 

  60. Gupta N, Mathew A, Khandelwal S (2020) Spatio-temporal impact assessment of land use / land cover (LU-LC) change on land surface temperatures over Jaipur city in India. Int J Urban Sustain Dev 12(3):283–299. https://doi.org/10.1080/19463138.2020.1727908

    Article  Google Scholar 

  61. Islam MdS, Hossain R, Morshed MdM, Afrin S (2020) The value of environmental (dis)amenities in the urban housing market: Evidence from Khulna, Bangladesh. J Urban Manag 9(2):180–190. https://doi.org/10.1016/j.jum.2020.02.001

    Article  Google Scholar 

  62. Roy S, Sowgat T, Ahmed MU, Islam SMT, Anjum N, Mondal J (2018) “Bangladesh: National urban policies and city profiles for dhaka and khulna,” Centre for sustainable, healthy and learning cities and neighbourhoods (SHLC). Available: http://www.centreforsustainablecities.ac.uk/wp-content/uploads/2018/06/Research-Report-Bangladesh-National-Urban-Policies-and-City-Profiles-for-Dhaka-and-Khulna.pdf. Accessed 15 Dec 2022

  63. Hassan MM (2017) Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sens Appl Soc Environ 7:69–83. https://doi.org/10.1016/j.rsase.2017.07.001

    Article  Google Scholar 

  64. Moniruzzam M, Roy A, Bhatt CM, Gupta A, An NTT, Hassan MR (2018) Impact analysis of urbanization on land use land cover change for Khulna City, Bangladesh using temporal Landsat imagery. Int Arch Photogramm Remote Sens Spat Inf Sci XLII–5:757–760. https://doi.org/10.5194/isprs-archives-XLII-5-757-2018

    Article  Google Scholar 

  65. Gupta N, Mathew A, Khandelwal S (2019) Analysis of cooling effect of water bodies on land surface temperature in nearby region: A case study of Ahmedabad and Chandigarh cities in India. Egypt J Remote Sens Space Sci 22(1):81–93. https://doi.org/10.1016/j.ejrs.2018.03.007

    Article  Google Scholar 

  66. Zhang Q, Wu Z, Guo G (2017) The cooling effect of water landscape in high-density urban built-up area a case study of the center urban district of guangzhou. In: 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen: IEEE, pp 394–400. https://doi.org/10.1109/ICFST.2017.8210543

  67. Rai R, Zhang Y, Paudel B, Li S, Khanal N (2017) A synthesis of studies on land use and land cover dynamics during 1930–2015 in Bangladesh. Sustainability 9(10):1866. https://doi.org/10.3390/su9101866

    Article  Google Scholar 

  68. Chen G et al (2020) Global projections of future urban land expansion under shared socioeconomic pathways. Nat Commun 11(1):537. https://doi.org/10.1038/s41467-020-14386-x

    Article  Google Scholar 

  69. Alam SS, Alam AJ, Rehman MF, Rahman S, Rahman N (2016) Building Climate Resilience to Noapara Town: A Coastal Urban Centre of Bangladesh. International Centre for Climate Change and Development (ICCCAD), Working Paper. [Online]. Available: https://pubs.iied.org/10779iied. Accessed 30 Dec 2022

  70. Alam H (2019) Brick kilns top polluter. The Daily Star. [Online]. Available: https://www.thedailystar.net/frontpage/news/brick-kilns-top-polluter-1701871. Accessed 20 Jan 2023

  71. Hussain Z (2013) In Bangladesh, the Alternative to Urbanization is Urbanization. World Bank Blog. [Online]. Available: https://blogs.worldbank.org/endpovertyinsouthasia/bangladesh-alternative-urbanization-urbanization. Accessed 8 May 2022

  72. Lai D, Liu W, Gan T, Liu K, Chen Q (2019) A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci Total Environ 661:337–353. https://doi.org/10.1016/j.scitotenv.2019.01.062

    Article  Google Scholar 

  73. de Abreu-Harbich LV, Labaki LC, Matzarakis A (2015) Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc Urban Plan 138:99–109. https://doi.org/10.1016/j.landurbplan.2015.02.008

    Article  Google Scholar 

  74. Ng E, Chen L, Wang Y, Yuan C (2012) A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build Environ 47:256–271. https://doi.org/10.1016/j.buildenv.2011.07.014

    Article  Google Scholar 

  75. Manteghi G, Limit HB, Remaz D (2015) Water bodies an urban microclimate: a review. Mod Appl Sci 9(6):1. https://doi.org/10.5539/mas.v9n6p1

    Article  Google Scholar 

  76. Wang Y, Akbari H (2014) Effect of sky view factor on outdoor temperature and comfort in Montreal. Environ Eng Sci 31(6):272–287. https://doi.org/10.1089/ees.2013.0430

    Article  Google Scholar 

  77. Yang F, Lau SSY, Qian F (2011) Thermal comfort effects of urban design strategies in high-rise urban environments in a sub-tropical climate. Archit Sci Rev 54(4):285–304. https://doi.org/10.1080/00038628.2011.613646

    Article  Google Scholar 

  78. Prieur-Richard A-H et al (2019) Global Research and Action Agenda on Cities and Climate Change Science. Intergovernmental Panel on Climate Change. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2019/07/Research-Agenda-Aug-10_Final_Long-version.pdf. Accessed 15 May 2022

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows:

• Study Conception and Design: Torit Chakraborty, Md Shaharier Alam.

• Data Collection: Md Salman Bashit and Md. Kamal Hosen.

• Analysis and Interpretation of Results: Torit Chakraborty, Md Shaharier Alam, Md Salman Bashit, and Rakibul Ahasan

• Draft Manuscript Preparation: All authors contributed to draft manuscript preparation, reviewing the results, and approving the final version of the manuscript.

Corresponding author

Correspondence to Md. Shaharier Alam.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, T., Alam, M., Bashit, M. et al. Spatio-temporal Investigation of the Urban Thermal Comfort in Khulna City and Surrounding Areas. Remote Sens Earth Syst Sci 6, 167–187 (2023). https://doi.org/10.1007/s41976-023-00088-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-023-00088-7

Keywords

Navigation