Skip to main content
Log in

Influences of elastic foundation on bending analysis of multidirectional porous functionally graded plate under industrial used loading: a meshfree approach

  • Original Paper
  • Published:
Multiscale and Multidisciplinary Modeling, Experiments and Design Aims and scope Submit manuscript

Abstract

In the present work, the bending analysis of a multi-directional porous functionally graded plate (MDPFG) resting on an elastic foundation involves determining the deflection and stress distribution of the plate under I, T and L loads. The material properties of MDPFG plates are to be graded in the thickness and length directions according to modified power-law distribution considering uniformly and nonuniformly types of porosity distributions. The energy principle produces the plate’s governing differential equations (GDEs). The strong form formulation is discretized using Wendland radial basis function (WRBF) is used to solve GDEs and determine the deflection and stress distribution of the plate under applied loading. To generate the numerical results, a code has been computed in MATLAB (2019). The normalized deflection and stresses of MDPFG plates are investigated with respect to the grading index, span-to-thickness ratio, aspect ratio, transverse loading type, porosity fraction, and porosity distribution. Future investigations of MDPFG plates may use new numerical results as standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MCS developed the theory, wrote the computer code, and drafted the manuscript. JS participated as a research mentor, checked the codes, data analysis, and scrutinized the manuscript.

Corresponding author

Correspondence to Jeeoot Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix-I

Appendix-I

The first part of GDEs (13) \(\delta u_{0}:\frac{{\partial N_{xx} }}{\partial x} + \frac{{\partial N_{xy} }}{\partial y} = 0\) are discretized using WRBF and are expressed as

$$[K^{l}_{1u} ]_{(NI,N)} = \sum\limits_{i = 1}^{NI} {\sum\limits_{j = 1}^{N} {\left( \begin{gathered} A_{11} \frac{{\partial^{2} g_{(i,j)} }}{{\partial x^{2} }} + A_{66} \frac{{\partial^{2} g_{(i,j)} }}{{\partial y^{2} }} \hfill \\ + 2A_{16} \frac{{\partial^{2} g_{(i,j)} }}{\partial x\partial y} \hfill \\ \end{gathered} \right)} }$$
(30)
$$[K^{l}_{1v} ]_{(NI,N)} = \sum\limits_{i = 1}^{NI} {\sum\limits_{j = 1}^{N} {\left( \begin{gathered} A_{12} \frac{{\partial^{2} g_{(i,j)} }}{\partial x\partial y} + A_{16} \frac{{\partial^{2} g_{(i,j)} }}{{\partial x^{2} }} \hfill \\ + A_{66} \frac{{\partial^{2} g_{(i,j)} }}{\partial x\partial y} + A_{26} \frac{{\partial^{2} g_{(i,j)} }}{{\partial y^{2} }} \hfill \\ \end{gathered} \right)} }$$
(31)
$$[K^{l}_{1w} ]_{(NI,N)} \, = \sum\limits_{i = 1}^{NI} {\sum\limits_{j = 1}^{N} {\left( \begin{gathered} - B_{11} \frac{{\partial^{3} g_{(i,j)} }}{{\partial x^{3} }} - B_{12} \frac{{\partial^{3} g_{(i,j)} }}{{\partial x\partial y^{2} }} \hfill \\ - 3B_{16} \frac{{\partial^{3} g_{(i,j)} }}{{\partial x^{2} \partial y}} - 2B_{66} \frac{{\partial^{3} g_{(i,j)} }}{{\partial x\partial y^{2} }} \hfill \\ - B_{26} \frac{{\partial^{3} g_{(i,j)} }}{{\partial y^{3} }} \hfill \\ \end{gathered} \right)} }$$
(32)
$$[K^{l}_{{1\phi_{x} }} ]_{(NI,N)} = \sum\limits_{i = 1}^{NI} {\sum\limits_{j = 1}^{N} {\left( \begin{gathered} E_{11} \frac{{\partial^{2} g_{(i,j)} }}{{\partial x^{2} }} + 2E_{16} \frac{{\partial^{2} g_{(i,j)} }}{\partial x\partial y} \hfill \\ + E_{66} \frac{{\partial^{2} g_{(i,j)} }}{{\partial y^{2} }} \hfill \\ \end{gathered} \right)} }$$
(33)
$$[K^{l}_{{1\phi_{y} }} ]_{(NI,N)} \, = \sum\limits_{i = 1}^{NI} {\sum\limits_{j = 1}^{N} {\left( \begin{gathered} E_{12} \frac{{\partial^{2} g_{(i,j)} }}{\partial x\partial y} + E_{16} \frac{{\partial^{2} g_{(i,j)} }}{{\partial x^{2} }} \hfill \\ + E_{26} \frac{{\partial^{2} g_{(i,j)} }}{{\partial y^{2} }} + E_{66} \frac{{\partial^{2} g_{(i,j)} }}{\partial x\partial y} \hfill \\ \end{gathered} \right)} }$$
(34)

Similarly, other parts of GDEs are discretized.

The boundary conditions can be discretized in similar fashion. For, e.g., simply supported boundary condition at the edge x = 0 (Eq. 22) is discretized and finally expressed as

$$[K]_{b,x = 0} \left\{ \delta \right\} = \left\{ 0 \right\}$$
(35)
$$\left[ K \right]_{b,x = 0} = \left[ {\begin{array}{*{20}c} {[K^{lb}_{1u} ]} & {[K^{lb}_{1v} ]} & {[K^{lb}_{1w} ]} & {[K^{lb}_{{1\phi_{x} }} ]} & {[K^{lb}_{{1\phi_{y} }} ]} \\ {[0]_{{nbx_{0} \times N}} } & {[K^{{{\text{l}} b}}_{2v} ]} & {[0]_{{nbx_{0} \times N}} } & {[0]_{{nbx_{0} \times N}} } & {[0]_{{nbx_{0} \times N}} } \\ {[0]_{{nbx_{0} \times N}} } & {[K^{{{\text{l}} b}}_{2v} ]} & {[K^{lb}_{3w} ]} & {[0]_{{nbx_{0} \times N}} } & {[0]_{{nbx_{0} \times N}} } \\ {[K^{lb}_{4u} ]} & {[K^{lb}_{4v} ]} & {[K^{lb}_{4w} ]} & {[K^{lb}_{{4\phi_{x} }} ]} & {[K^{lb}_{{4\phi_{y} }} ]} \\ {[0]_{{nbx_{0} \times N}} } & {[K^{{{\text{l}} b}}_{2v} ]} & {[0]_{{nbx_{0} \times N}} } & {[0]_{{nbx_{0} \times N}} } & {[K^{lb}_{{5\phi_{y} }} ]} \\ \end{array} } \right]$$
(36)

nbx0 = number of nodes on the boundary x = 0.

$$[K^{lb}_{1u} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( {A_{11} \frac{{\partial g_{(i,j)} }}{\partial x} + A_{16} \frac{{\partial g_{(i,j)} }}{\partial y}} \right)} }$$
(37)
$$[K^{lb}_{1v} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( {A_{12} \frac{{\partial g_{(i,j)} }}{\partial x} + A_{16} \frac{{\partial g_{(i,j)} }}{\partial y}} \right)} }$$
(38)
$$[K^{lb}_{{1\phi_{x} }} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( \begin{gathered} - B_{11} \frac{{\partial^{2} g_{(i,j)} }}{{\partial x^{2} }} - B_{12} \frac{{\partial^{2} g_{(i,j)} }}{{\partial y^{2} }} \hfill \\ - 2B_{16} \frac{{\partial^{2} g_{(i,j)} }}{\partial y\partial x} \hfill \\ \end{gathered} \right)} }$$
(39)
$$[K^{l}_{{1\phi_{x} }} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( {E_{12} \frac{{\partial g_{(i,j)} }}{\partial y} + E_{16} \frac{{\partial g_{(i,j)} }}{\partial x}} \right)} }$$
(40)
$$\,[K^{lb}_{{1\phi_{y} }} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( {E_{11} \frac{{\partial g_{(i,j)} }}{\partial x} + E_{16} \frac{{\partial g_{(i,j)} }}{\partial y}} \right)} }$$
(41)
$$[K^{lb}_{2v} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {g_{(i,j)} } }$$
(42)
$$[K^{lb}_{3w} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {g_{(i,j)} } }$$
(43)
$$[K^{lb}_{4u} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( {B_{11} \frac{{\partial g_{(i,j)} }}{\partial x} + B_{16} \frac{{\partial g_{(i,j)} }}{\partial y}} \right)} }$$
(44)
$$[K^{lb}_{4v} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( {B_{12} \frac{{\partial g_{(i,j)} }}{\partial x} + B_{16} \frac{{\partial g_{(i,j)} }}{\partial y}} \right)} }$$
(45)
$$[K^{lb}_{4w} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( \begin{gathered} - D_{11} \frac{{\partial^{2} g_{(i,j)} }}{{\partial x^{2} }} - D_{12} \frac{{\partial^{2} g_{(i,j)} }}{{\partial y^{2} }} \hfill \\ - 2D_{16} \frac{{\partial^{2} g_{(i,j)} }}{\partial y\partial x} \hfill \\ \end{gathered} \right)} }$$
(46)
$$[K^{l}_{{4\phi_{x} }} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( {F_{12} \frac{{\partial g_{(i,j)} }}{\partial y} + F_{16} \frac{{\partial g_{(i,j)} }}{\partial x}} \right)} }$$
(47)
$$[K^{lb}_{{4\phi_{y} }} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {\left( {F_{11} \frac{{\partial g_{(i,j)} }}{\partial x} + F_{16} \frac{{\partial g_{(i,j)} }}{\partial y}} \right)} }$$
(48)
$$[K^{lb}_{{5\phi_{y} }} ] = \sum\limits_{i = NI + 1}^{{NI + 1 + nbx_{0} }} {\sum\limits_{j = 1}^{N} {g_{(i,j)} } }$$
(49)

Similarly, other boundary conditions at the edges x = a, y = 0 and y = b are discretized. The resulting equation is written as matrix form as

$$[K]_{B} \left\{ \delta \right\} = \left\{ 0 \right\}$$
(50)

where

$$\left[ K \right]_{B} = \left[ {\left[ {\begin{array}{*{20}c} {[K]_{b,y = 0} } & {[K]_{b,x = a} } & {[K]_{b,y = b} } & {[K]_{b,x = 0} } \\ \end{array} } \right]_{{(5 \times N_{B} ,5 \times N)}} } \right]^{T}$$
(51)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, M.C., Singh, J. Influences of elastic foundation on bending analysis of multidirectional porous functionally graded plate under industrial used loading: a meshfree approach. Multiscale and Multidiscip. Model. Exp. and Des. 6, 519–535 (2023). https://doi.org/10.1007/s41939-023-00156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41939-023-00156-x

Keywords

Navigation