Skip to main content
Log in

Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The sandwich structures contain three or more layers attached to the core. In the current research, a three-layered sandwich microplate containing functionally graded (FG) porous materials as core and piezoelectric nanocomposite materials as face sheets subjected to electric field resting on Pasternak foundation is chosen as a model to investigate its vibrational behavior. To make the face sheets stiffer, they are reinforced by carbon nanotubes (CNTs) via different distribution patterns which result in changing their properties along the thickness direction. An innovative quasi-3D shear deformation theory with five unknowns, Hamilton’s principle, and modified couple stress theory are hired to gain equations of motion related to the abovementioned microstructure. Eventually, the evaluation of materials’ properties, geometry specifications, foundation moduli, and hygrothermal environment on vibrational behavior of such structures became easier using the presented results of the current study in figure format. As an instance, it is revealed that CNTs’ volume fraction elevation causes mechanical properties improvement, and in the following, natural frequency increment. Besides, considering the hygrothermal environment causes significant effects on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arshid E, Arshid H, Amir S, Mousavi SB (2021) Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civ Mech Eng 21:6. https://doi.org/10.1007/s43452-020-00150-x

    Article  Google Scholar 

  2. Amir S, Arshid E, Khoddami Maraghi Z et al (2020) Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate. J Vib Control 26:1523–1537. https://doi.org/10.1177/1077546319899203

    Article  MathSciNet  Google Scholar 

  3. Arshid E, Amir S, Loghman A (2020) Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-composite layers. J Sandw Struct Mater. https://doi.org/10.1177/1099636220955027

    Article  Google Scholar 

  4. Amir S, Arshid E, Khoddami Maraghi Z (2020) Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium. Smart Struct Syst 25:581–592. https://doi.org/10.12989/sss.2020.25.5.581

    Article  Google Scholar 

  5. Koizumi M (1997) FGM activities in Japan. Compos Part B Eng 28:1–4. https://doi.org/10.1016/s1359-8368(96)00016-9

    Article  Google Scholar 

  6. Liu GR, Han X, Lam KY (2001) Integration technique for evaluating confluent hypergeometric functions and its application to functionally graded materials. Comput Struct 79:1039–1047. https://doi.org/10.1016/S0045-7949(00)00197-8

    Article  MathSciNet  Google Scholar 

  7. Han X, Liu GR, Lam KY (2001) Transient waves in plates of functionally graded materials. Int J Numer Methods Eng 52:851–865. https://doi.org/10.1002/nme.237

    Article  MATH  Google Scholar 

  8. Najafizadeh MM, Eslami MR (2002) Buckling analysis of circular plates of functionally graded materials under uniform radial compression. Int J Mech Sci 44:2479–2493. https://doi.org/10.1016/S0020-7403(02)00186-8

    Article  MATH  Google Scholar 

  9. Arshid E, Khorshidvand AR (2018) Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin Walled Struct 125:220–233. https://doi.org/10.1016/j.tws.2018.01.007

    Article  Google Scholar 

  10. Batou B, Nebab M, Bennai R et al (2019) Wave dispersion properties in imperfect sigmoid plates using various HSDTs. Steel Compos Struct 33:699–716. https://doi.org/10.12989/scs.2019.33.5.699

    Article  Google Scholar 

  11. Attia MA, Mohamed SA (2020) Thermal vibration characteristics of pre/post-buckled bi-directional functionally graded tapered microbeams based on modified couple stress Reddy beam theory. Eng Comput. https://doi.org/10.1007/s00366-020-01188-4

    Article  Google Scholar 

  12. Pydah A, Batra RC (2018) Analytical solution for cylindrical bending of two-layered corrugated and webcore sandwich panels. Thin Walled Struct 123:509–519. https://doi.org/10.1016/j.tws.2017.11.023

    Article  Google Scholar 

  13. Sun G, Wang E, Zhang J et al (2020) Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse. Int J Impact Eng 135:103327. https://doi.org/10.1016/j.ijimpeng.2019.103327

    Article  Google Scholar 

  14. Le TC, Nguyen TN, Vu TH et al (2020) A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate. Eng Comput. https://doi.org/10.1007/s00366-020-01154-0

    Article  Google Scholar 

  15. Arshid H, Khorasani M, Soleimani-Javid Z et al (2020) Quasi-3D hyperbolic shear deformation theory for the free vibration study of honeycomb microplates with graphene nanoplatelets-reinforced epoxy skins. Molecules 25:5085. https://doi.org/10.3390/molecules25215085

    Article  Google Scholar 

  16. Hadji L (2020) Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model. Smart Struct Syst 26:253–262. https://doi.org/10.12989/sss.2020.26.2.253

    Article  Google Scholar 

  17. Tlidji Y, Benferhat R, Tahar HD (2021) Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity. Struct Eng Mech 77:217–229. https://doi.org/10.12989/sem.2021.77.2.217

    Article  Google Scholar 

  18. Abdulrazzaq MA, Fenjan RM, Faleh NM (2020) Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory. Steel Compos Struct 35:147–157. https://doi.org/10.12989/scs.2020.35.1.147

    Article  Google Scholar 

  19. Khoa ND, Anh VM, Duc ND (2019) Nonlinear dynamic response and vibration of functionally graded nanocomposite cylindrical panel reinforced by carbon nanotubes in thermal environment. J Sandw Struct Mater. https://doi.org/10.1177/1099636219847191

    Article  Google Scholar 

  20. Kiani Y, Eslami MR (2012) Thermal buckling and post-buckling response of imperfect temperature-dependent sandwich FGM plates resting on elastic foundation. Arch Appl Mech 82:891–905. https://doi.org/10.1007/s00419-011-0599-8

    Article  MATH  Google Scholar 

  21. Ibrahim HH, Tawfik M, Al-Ajmi M (2007) Thermal buckling and nonlinear flutter behavior of functionally graded material panels. J Aircr 44:1610–1618. https://doi.org/10.2514/1.27866

    Article  Google Scholar 

  22. Mehar K, Panda SK (2018) Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method. Polym Compos 39:2751–2764. https://doi.org/10.1002/pc.24266

    Article  Google Scholar 

  23. Karimiasl M, Ebrahimi F, Mahesh V (2019) Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell. Thin Walled Struct 143:106152. https://doi.org/10.1016/j.tws.2019.04.044

    Article  Google Scholar 

  24. Hebali H, Tounsi A, Houari MSA et al (2014) New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J Eng Mech 140:374–383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665

    Article  Google Scholar 

  25. Benahmed A, Houari MSA, Benyoucef S et al (2017) A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation. Geomech Eng 12:9–34. https://doi.org/10.12989/gae.2017.12.1.009

    Article  Google Scholar 

  26. Guerroudj HZ, Yeghnem R, Kaci A et al (2018) Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory. Smart Struct Syst 22:121–132. https://doi.org/10.12989/sss.2018.22.1.121

    Article  Google Scholar 

  27. Shahsavari D, Shahsavari M, Li L, Karami B (2018) A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp Sci Technol 72:134–149. https://doi.org/10.1016/j.ast.2017.11.004

    Article  Google Scholar 

  28. Khiloun M, Bousahla AA, Kaci A et al (2020) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput 36:807–821. https://doi.org/10.1007/s00366-019-00732-1

    Article  Google Scholar 

  29. Oskouie MF, Hassanzadeh-Aghdam MK, Ansari R (2021) A new numerical approach for low velocity impact response of multiscale-reinforced nanocomposite plates. Eng Comput 37:713–730. https://doi.org/10.1007/s00366-019-00851-9

    Article  Google Scholar 

  30. Ghandourh EE, Abdraboh AM (2020) Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models. Steel Compos Struct 36:293–305. https://doi.org/10.12989/scs.2020.36.3.293

    Article  Google Scholar 

  31. Ebrahimi FMV (2019) Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory. Adv Nano Res 7:223–231. https://doi.org/10.12989/anr.2019.7.4.223

    Article  Google Scholar 

  32. Amir S, Arshid E, Rasti-alhosseini SMA, Loghman A (2019) Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment. J Therm Stress. https://doi.org/10.1080/01495739.2019.1660601

    Article  Google Scholar 

  33. Arshid E, Khorshidvand AR, Khorsandijou SM (2019) The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT. Struct Eng Mech 70:97–112. https://doi.org/10.12989/sem.2019.70.1.097

    Article  Google Scholar 

  34. Arshid E, Amir S, Loghman A (2020) Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int J Mech Sci 180:105656. https://doi.org/10.1016/j.ijmecsci.2020.105656

    Article  Google Scholar 

  35. Kim J, Żur KK, Reddy JN (2019) Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct 209:879–888. https://doi.org/10.1016/j.compstruct.2018.11.023

    Article  Google Scholar 

  36. Khaniki HB, Ghayesh MH, Hussain S, Amabili M (2020) Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions. Eng Comput. https://doi.org/10.1007/s00366-020-01208-3

    Article  Google Scholar 

  37. Ebrahimi F, Farazmandnia N, Kokaba MR, Mahesh V (2019) Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng Comput. https://doi.org/10.1007/s00366-019-00864-4

    Article  Google Scholar 

  38. Cuong-Le T, Nguyen KD, Nguyen-Trong N et al (2021) A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA. Compos Struct 259:113216. https://doi.org/10.1016/j.compstruct.2020.113216

    Article  Google Scholar 

  39. Khorasani M, Eyvazian A, Karbon M et al (2020) Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects. Smart Struct Syst 26:331–343. https://doi.org/10.12989/sss.2020.26.3.331

    Article  Google Scholar 

  40. Wu Q, Chen H, Gao W (2020) Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams. Eng Comput 36:1739–1750. https://doi.org/10.1007/s00366-019-00794-1

    Article  Google Scholar 

  41. Amir S, Soleymani-Javid Z, Arshid E (2019) Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. Appl Math Mech. https://doi.org/10.1002/zamm.201800334

    Article  Google Scholar 

  42. Allahkarami F (2020) Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment. Eng Comput. https://doi.org/10.1007/s00366-020-01169-7

    Article  Google Scholar 

  43. Ebrahimi F, Nouraei M, Dabbagh A (2020) Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Eng Comput 36:879–895. https://doi.org/10.1007/s00366-019-00737-w

    Article  Google Scholar 

  44. Arshid E, Amir S, Loghman A (2021) Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp Sci Technol. https://doi.org/10.1016/j.ast.2021.106561

    Article  Google Scholar 

  45. Eyvazian A, Hamouda AM, Tarlochan F et al (2019) Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform graphene platelet with magnetorheological fluid core. Steel Compos Struct 33:891–906. https://doi.org/10.12989/scs.2019.33.6.891

    Article  Google Scholar 

  46. Mohammadimehr M, Arshid E, Alhosseini SMAR et al (2019) Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation. Struct Eng Mech 70:683–702. https://doi.org/10.12989/sem.2019.70.6.683

    Article  Google Scholar 

  47. Zhao M, Qian C, Lee SWR et al (2007) Electro-elastic analysis of piezoelectric laminated plates. Adv Compos Mater 16:63–81. https://doi.org/10.1163/156855107779755273

    Article  Google Scholar 

  48. Ghorbanpour Arani A, Jamali M, Mosayyebi M, Kolahchi R (2016) Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory. Compos Part B Eng 95:209–224. https://doi.org/10.1016/j.compositesb.2016.03.077

    Article  Google Scholar 

  49. Amir S, Khorasani M, BabaAkbar-Zarei H (2018) Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory. J Sandw Struct Mater. https://doi.org/10.1177/1099636218795385

    Article  Google Scholar 

  50. Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92:676–683. https://doi.org/10.1016/j.compstruct.2009.09.024

    Article  Google Scholar 

  51. Wang B, Liu M, Zhao J, Zhou S (2014) A size-dependent Reddy-Levinson beam model based on a strain gradient elasticity theory. Meccanica 49:1427–1441. https://doi.org/10.1007/s11012-014-9912-2

    Article  MathSciNet  MATH  Google Scholar 

  52. Ashraf MA, Liu Z, Zhang D, Pham BT (2020) Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPL-RC annular sector plates. Eng Comput. https://doi.org/10.1007/s00366-020-01068-x

    Article  Google Scholar 

  53. Rostami R, Mohammadimehr M (2020) Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers. Eng Comput. https://doi.org/10.1007/s00366-020-01052-5

    Article  Google Scholar 

  54. Karami B, Janghorban M, Tounsi A (2018) Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin Walled Struct 129:251–264. https://doi.org/10.1016/j.tws.2018.02.025

    Article  Google Scholar 

  55. Thai CH, Ferreira AJM, Tran TD, Phung-Van P (2020) A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Compos Struct 234:111695. https://doi.org/10.1016/j.compstruct.2019.111695

    Article  Google Scholar 

  56. Qaderi S, Ebrahimi F (2020) Vibration analysis of polymer composite plates reinforced with graphene platelets resting on two-parameter viscoelastic foundation. Eng Comput. https://doi.org/10.1007/s00366-020-01066-z

    Article  Google Scholar 

  57. Chen H, Song H, Li Y, Safarpour M (2020) Hygro-thermal buckling analysis of polymer–CNT–fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM. Eng Comput. https://doi.org/10.1007/s00366-020-01102-y

    Article  Google Scholar 

  58. Arshid E, Kiani A, Amir S, Zarghami Dehaghani M (2019) Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates. Proc Inst Mech Eng Part C J Mech Eng Sci 233:5659–5675. https://doi.org/10.1177/0954406219850598

    Article  Google Scholar 

  59. Wattanasakulpong N, Chaikittiratana A (2015) Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Appl Math Model 39:5459–5472. https://doi.org/10.1016/j.apm.2014.12.058

    Article  MathSciNet  MATH  Google Scholar 

  60. Khorasani M, Soleimani-Javid Z, Arshid E et al (2020) Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced epoxy skins with stretching effect. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113430

    Article  Google Scholar 

  61. Amir S, BabaAkbar-Zarei H, Khorasani M (2020) Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech Based Des Struct Mach 48:146–163. https://doi.org/10.1080/15397734.2019.1624175

    Article  Google Scholar 

  62. Na KS, Kim JH (2003) Three-dimensional thermal buckling analysis of functionally graded materials. Compos Part B Eng 35:429–437. https://doi.org/10.1016/j.compositesb.2003.11.013

    Article  Google Scholar 

  63. Amir S, Soleimani-Javid Z, Arshid E (2019) Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM Zeitschrift fur Angew Math und Mech 99:1–21. https://doi.org/10.1002/zamm.201800334

    Article  MathSciNet  Google Scholar 

  64. Wu HL, Yang J, Kitipornchai S (2016) Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Compos Part B Eng 90:86–96. https://doi.org/10.1016/j.compositesb.2015.12.007

    Article  Google Scholar 

  65. Thai H-T, Choi D-H (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–153. https://doi.org/10.1016/j.compstruct.2012.08.023

    Article  Google Scholar 

  66. Ke L-L, Wang Y-S, Yang J, Kitipornchai S (2012) Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J Sound Vib 331:94–106. https://doi.org/10.1016/J.JSV.2011.08.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelouahed Tounsi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Governing equations of motion can be presented in terms of displacement components as:

$$ \begin{aligned} & \delta u: - Q_{110} \left( {\frac{{\partial^{2} }}{{\partial x^{2} }}u} \right) + Q_{111} \left( {\frac{{\partial^{3} }}{{\partial x^{3} }}w_{\text{b}} } \right) + Q_{113} \left( {\frac{{\partial^{3} }}{{\partial x^{3} }}w_{\text{s}} } \right) - Q_{120} \left( {\frac{{\partial^{2} }}{\partial x\partial y}v} \right) + Q_{121} \left( {\frac{\partial 3}{{\partial x\partial y^{2} }}w_{\text{b}} } \right) + Q_{123} \left( {\frac{{\partial^{3} }}{{\partial x\partial y^{2} }}w_{\text{s}} } \right) \\ & \quad - Q_{136} \left( {\frac{\partial }{\partial x}\lambda } \right) - E_{310} \left( {\frac{\partial }{\partial x}\Psi } \right) - Q_{660} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}u} \right) + 2Q_{661} \left( {\frac{{\partial^{3} }}{{\partial x\partial y^{2} }}w_{\text{b}} } \right) + 2Q_{663} \left( {\frac{{\partial^{3} }}{{\partial x\partial y^{2} }}w_{\text{s}} } \right) - Q_{660} \left( {\frac{{\partial^{2} }}{\partial x\partial y}v} \right) \\ & \quad - \frac{1}{4}l^{2} T_{0} \left( {\frac{{\partial^{4} }}{{\partial x\partial y^{3} }}v} \right) + \frac{1}{4}l^{2} T_{0} \left( {\frac{{\partial^{4} }}{{\partial y^{4} }}u} \right) - \frac{1}{4}l^{2} T_{0} \left( {\frac{{\partial^{4} }}{{\partial x^{3} \partial y}}v} \right) + \frac{1}{4}l^{2} T_{0} \left( {\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}u} \right) - I_{0} \left( {\frac{{\partial^{2} }}{{\partial t^{2} }}u} \right) + I_{1} \left( {\frac{{\partial^{3} }}{{\partial t^{2} \partial x}}w_{\text{b}} } \right) \\ & \quad + I_{3} \left( {\frac{{\partial^{3} }}{{\partial t^{2} \partial x}}w_{\text{s}} } \right) = 0. \\ \end{aligned} $$
(40)
$$ \begin{aligned} & \delta v: - Q_{120} \left( {\frac{{\partial^{2} }}{\partial x\partial y}u} \right) + Q_{121} \left( {\frac{{\partial^{3} }}{{\partial x^{2} \partial y}}w_{\text{b}} } \right) + Q_{123} \left( {\frac{{\partial^{3} }}{{\partial x^{2} \partial y}}w_{\text{s}} } \right) - Q_{220} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}v} \right) + Q_{221} \left( {\frac{{\partial^{3} }}{{\partial y^{3} }}w_{\text{b}} } \right) + Q_{223} \left( {\frac{{\partial^{3} }}{{\partial y^{3} }}w_{\text{s}} } \right) \\ & \quad - Q_{236} \left( {\frac{\partial }{\partial y}\lambda } \right) - E_{320} \left( {\frac{\partial }{\partial y}\Psi } \right) - Q_{660} \left( {\frac{{\partial^{2} }}{\partial y\partial x}u} \right) + 2Q_{661} \left( {\frac{{\partial^{3} }}{{\partial x^{2} \partial y}}w_{\text{b}} } \right) + 2Q_{663} \left( {\frac{{\partial^{3} }}{{\partial x^{2} \partial y}}w_{\text{s}} } \right) - Q_{660} \left( {\frac{{\partial^{2} }}{{\partial x^{2} }}v} \right) \\ & \quad + \frac{1}{4}l^{2} T_{0} \left( {\frac{{\partial^{4} }}{{\partial x^{4} }}v} \right) - \frac{1}{4}l^{2} T_{0} \left( {\frac{{\partial^{4} }}{{\partial x^{3} \partial y}}u} \right) + \frac{1}{4}l^{2} T_{0} \left( {\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}v} \right) - \frac{1}{4}l^{2} T_{0} \left( {\frac{{\partial^{4} }}{{\partial x\partial y^{3} }}u} \right) - I_{0} \left( {\frac{{\partial^{2} }}{{\partial t^{2} }}v} \right) + I_{1} \left( {\frac{{\partial^{3} }}{{\partial t^{2} \partial y}}w_{\text{b}} } \right) \\ & \quad + I_{3} \left( {\frac{{\partial^{3} }}{{\partial t^{2} \partial y}}w_{\text{s}} } \right) = 0. \\ \end{aligned} $$
(41)
$$ \begin{aligned} & \delta w_{\text{b}} : - Q_{121} (\frac{{\partial^{3} }}{{\partial x\partial y^{2} }}u) + 2Q_{122} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{b}} ) + 2Q_{124} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{s}} ) - Q_{221} (\frac{{\partial^{3} }}{{\partial y^{3} }}v) + Q_{222} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{b}} ) + Q_{224} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) \\ & \quad - Q_{237} (\frac{{\partial^{2} }}{{\partial y^{2} }}\lambda ) - E_{321} (\frac{{\partial^{2} }}{{\partial y^{2} }}\Psi ) + 4Q_{662} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{b}} ) + 4Q_{664} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{s}} ) - 2Q_{661} (\frac{{\partial^{3} }}{{\partial y^{2} \partial x}}u) - Q_{111} (\frac{{\partial^{3} }}{{\partial x^{3} }}u) \\ & \quad + Q_{112} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{b}} ) + Q_{114} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) - Q_{121} (\frac{{\partial^{3} }}{{\partial x^{2} \partial y}}v) + 2l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{b}} ) + l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{s}} ) - 2Q_{661} (\frac{{\partial^{3} }}{{\partial x^{2} \partial y}}v) \\ & \quad + l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}\lambda ) - l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{s}} ) + l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{b}} ) + \frac{1}{2}l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) + \frac{1}{2}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial y^{4} }}\lambda ) + \frac{1}{2}l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) \\ & \quad + l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{b}} ) + \frac{1}{2}l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) + \frac{1}{2}l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) + \frac{1}{2}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial x^{4} }}\lambda ) - Q_{137} (\frac{{\partial^{4} }}{{\partial x^{2} }}\lambda ) - E_{311} (\frac{{\partial^{4} }}{{\partial x^{2} }}\Psi ) \\ & \quad - I_{1} (\frac{{\partial^{3} }}{{\partial t^{2} \partial x}}u) + I_{2} (\frac{{\partial^{4} }}{{\partial t^{2} \partial x^{2} }}w_{\text{b}} ) + I_{5} (\frac{{\partial^{4} }}{{\partial t^{2} \partial x^{2} }}w_{\text{s}} ) - I_{1} (\frac{{\partial^{3} }}{{\partial t^{2} \partial y}}v) + I_{2} (\frac{{\partial^{4} }}{{\partial t^{2} \partial y^{2} }}w_{\text{b}} ) + I_{5} (\frac{{\partial^{4} }}{{\partial t^{2} \partial y^{2} }}w_{\text{s}} ) \\ & \quad - I_{0} (\frac{{\partial^{2} }}{{\partial t^{2} }}w_{\text{b}} ) - I_{0} (\frac{{\partial^{2} }}{{\partial t^{2} }}w_{\text{s}} ) - I_{4} (\frac{{\partial^{2} }}{{\partial t^{2} }}\lambda ) = 0. \\ \end{aligned} $$
(42)
$$ \begin{aligned} & \delta w_{\text{s}} :\frac{1}{2}l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{b}} ) + \frac{1}{4}l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) + \frac{1}{4}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial x^{4} }}\lambda ) + Q_{114} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{b}} ) + \frac{1}{2}l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{b}} ) + \frac{1}{4}l^{2} T_{5} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) \\ & \quad + \frac{1}{4}l^{2} T_{4} (\frac{{\partial^{4} }}{{\partial x^{4} }}\lambda ) - \frac{1}{4}l^{2} T_{6} (\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{s}} ) - \frac{1}{4}l^{2} T_{6} (\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{s}} ) - \frac{1}{4}l^{2} T_{7} (\frac{{\partial^{2} }}{{\partial x^{2} }}\lambda ) - \frac{1}{4}l^{2} T_{7} (\frac{{\partial^{2} }}{{\partial y^{2} }}\lambda ) - Q_{113} (\frac{{\partial^{3} }}{{\partial x^{3} }}u) \\ & \quad - Q_{123} (\frac{{\partial^{3} }}{{\partial x^{2} \partial y}}v) + l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial y^{2} \partial x^{2} }}w_{\text{b}} ) + l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial y^{2} \partial x^{2} }}w_{\text{s}} ) - E_{132} (\frac{{\partial^{2} }}{{\partial x^{2} }}\lambda ) - Q_{123} (\frac{{\partial^{3} }}{{\partial y^{2} \partial x}}u) + Q_{115} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) \\ & \quad + \frac{1}{2}l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{s}} ) + E_{2410} (\frac{{\partial^{2} }}{{\partial y^{2} }}\Psi ) - Q_{223} (\frac{{\partial^{3} }}{{\partial y^{3} }}v) + Q_{224} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{b}} ) + Q_{225} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) - E_{232} (\frac{{\partial^{2} }}{{\partial y^{2} }}\lambda ) \\ & \quad - Q_{138} (\frac{{\partial^{2} }}{{\partial x^{2} }}\lambda ) - Q_{4410} (\frac{{\partial^{2} }}{{\partial y^{2} }}\Psi ) - E_{323} (\frac{{\partial^{2} }}{{\partial y^{2} }}\Psi ) - 2Q_{663} (\frac{{\partial^{3} }}{{\partial x\partial y^{2} }}u) - Q_{4410} (\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{s}} ) - Q_{238} (\frac{{\partial^{2} }}{{\partial y^{2} }}\lambda ) \\ & \quad + l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{b}} ) + \frac{1}{2}l^{2} T_{4} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}\lambda ) + \frac{1}{2}l^{2} T_{5} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{s}} ) + \frac{1}{2}l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{b}} ) + \frac{1}{2}l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) \\ & \quad + \frac{1}{4}l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) + \frac{1}{4}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial y^{4} }}\lambda ) + 4Q_{664} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{b}} ) - Q_{5510} (\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{s}} ) + 4Q_{665} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{s}} ) \\ & \quad + \frac{1}{2}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}\lambda ) + \frac{1}{2}l^{2} T_{2} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) + \frac{1}{4}l^{2} T_{4} (\frac{{\partial^{4} }}{{\partial y^{4} }}\lambda ) - 2Q_{663} (\frac{{\partial^{3} }}{{\partial x^{2} \partial y}}v) + 2Q_{125} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{s}} ) \\ & \quad - E_{313} (\frac{{\partial^{2} }}{{\partial x^{2} }}\Psi ) + E_{1510} (\frac{{\partial^{2} }}{{\partial x^{2} }}\Psi ) - Q_{5510} (\frac{{\partial^{2} }}{{\partial x^{2} }}\Psi ) + \frac{1}{4}l^{2} T_{5} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) + 2Q_{124} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{b}} ) + \frac{1}{2}l^{2} T_{0} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{b}} ) \\ & \quad - I_{3} (\frac{{\partial^{3} }}{{\partial t^{2} \partial x}}u) + I_{6} (\frac{{\partial^{4} }}{{\partial t^{2} \partial x^{2} }}w_{\text{s}} ) - I_{3} (\frac{{\partial^{3} }}{{\partial t^{2} \partial y}}v) + I_{5} (\frac{{\partial^{4} }}{{\partial t^{2} \partial y^{2} }}w_{\text{b}} ) + I_{6} (\frac{{\partial^{4} }}{{\partial t^{2} \partial y^{2} }}w_{\text{s}} ) - I_{0} (\frac{{\partial^{2} }}{{\partial t^{2} }}w_{\text{b}} ) \\ & \quad - I_{0} (\frac{{\partial^{2} }}{{\partial t^{2} }}w_{\text{s}} ) - I_{4} (\frac{{\partial^{2} }}{{\partial t^{2} }}\lambda ) + I_{5} (\frac{{\partial^{4} }}{{\partial t^{2} \partial x^{2} }}w_{\text{b}} ) = 0. \\ \end{aligned} $$
(43)
$$ \begin{aligned} & \delta \lambda :\frac{1}{4}l^{2} T_{4} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) + \frac{1}{2}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{b}} ) - \frac{1}{4}l^{2} T_{7} (\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{s}} ) + \frac{1}{4}l^{2} T_{4} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) - \frac{1}{4}l^{2} T_{9} (\frac{{\partial^{2} }}{{\partial y^{2} }}\lambda ) - \frac{1}{4}l^{2} T_{7} (\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{s}} ) \\ & \quad - \frac{1}{4}l^{2} T_{9} (\frac{{\partial^{2} }}{{\partial x^{2} }}\lambda ) - Q_{5510} (\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{s}} ) - Q_{5510} (\frac{{\partial^{2} }}{{\partial x^{2} }}\Psi ) + E_{1510} (\frac{{\partial^{2} }}{{\partial x^{2} }}\Psi ) + l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial x^{2} \partial y^{2} }}w_{\text{b}} ) - Q_{4410} (\frac{{\partial^{2} }}{{\partial y^{2} }}\Psi ) \\ & \quad + \frac{1}{2}l^{2} T_{3} (\frac{{\partial^{4} }}{{\partial y^{2} \partial x^{2} }}\lambda ) + \frac{1}{2}l^{2} T_{4} (\frac{{\partial^{4} }}{{\partial y^{2} \partial x^{2} }}w_{\text{s}} ) + \frac{1}{4}l^{2} T_{3} (\frac{{\partial^{4} }}{{\partial x^{4} }}\lambda ) + E_{2410} (\frac{{\partial^{2} }}{{\partial y^{2} }}\Psi ) + \frac{1}{4}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial x^{4} }}w_{\text{s}} ) \\ & \quad + \frac{1}{4}l^{2} T_{3} (\frac{{\partial^{4} }}{{\partial y^{4} }}\lambda ) + \frac{1}{2}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial y^{2} \partial x^{2} }}w_{\text{s}} ) + \frac{1}{2}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{b}} ) - Q_{138} (\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{s}} ) + \frac{1}{4}l^{2} T_{1} (\frac{{\partial^{4} }}{{\partial y^{4} }}w_{\text{s}} ) + Q_{339} (\lambda ) \\ & \quad + E_{334} (\Psi ) + Q_{236} \left( {\frac{\partial }{\partial y}v} \right) + Q_{136} \left( {\frac{\partial }{\partial x}u} \right) - Q_{137} \left( {\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{b}} } \right) - Q_{4410} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{s}} } \right) - Q_{237} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{b}} } \right) - Q_{238} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{s}} } \right) \\ & \quad - I_{4} \left( {\frac{{\partial^{2} }}{{\partial t^{2} }}w_{\text{b}} } \right) + I_{4} \left( {\frac{{\partial^{2} }}{{\partial t^{2} }}w_{\text{s}} } \right) + I_{4} \left( {\frac{{\partial^{2} }}{{\partial t^{2} }}\lambda } \right) = 0. \\ \end{aligned} $$
(44)
$$ \begin{aligned} & \delta \Psi :E_{1510} \left( {\frac{{\partial^{2} }}{{\partial x^{2} }}\Psi } \right) + E_{5510} \left( {\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{s}} } \right) + D_{111} \left( {\frac{{\partial^{2} }}{{\partial x^{2} }}\Psi } \right) + E_{2410} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}\Psi } \right) + E_{2410} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{s}} } \right) + D_{222} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}\Psi } \right) \\ & \quad + E_{320} \left( {\frac{\partial }{\partial y}v} \right) + E_{310} \left( {\frac{\partial }{\partial x}u} \right) - E_{311} \left( {\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{b}} } \right) - E_{321} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{b}} } \right) - E_{323} \left( {\frac{{\partial^{2} }}{{\partial y^{2} }}w_{\text{s}} } \right) - E_{313} \left( {\frac{{\partial^{2} }}{{\partial x^{2} }}w_{\text{s}} } \right) \\ & \quad + E_{334} \lambda - 2D_{331} V_{0} - D_{333} \Psi = 0. \\ \end{aligned} $$
(45)

The used coefficients in governing equations of (40)–(45) are introduced as below:

$$ \begin{aligned} & \left\{ {\begin{array}{*{20}c} {I_{7} ,} & {I_{6} ,} & {I_{5} ,} & {I_{4} ,} & {I_{3} ,} & {I_{2} ,} & {I_{1} ,} & {I_{0} } \\ \end{array} } \right\} \\ & \quad = \int_{{ - \frac{h}{2}}}^{\frac{h}{2}} \,\rho_{{\text{c,f}}} \left\{ {\begin{array}{*{20}c} {g(z)^{2} ,} & {f(z)^{2} ,} & {zf(z),} & {g(z),} & {f(z),} & {z^{2} ,} & {z,} & 1 \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \left\{ {\begin{array}{*{20}c} {Q_{110} ,} & {Q_{111} ,} & {Q_{112} } \\ \end{array} } \right\} = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{11} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{11} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{11} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z, $$
$$ \left\{ {\begin{array}{*{20}c} {Q_{120} ,} & {Q_{121} ,} & {Q_{122} } \\ \end{array} } \right\} = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{12} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{12} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{12} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z, $$
$$ \left\{ {\begin{array}{*{20}c} {Q_{130} ,} & {Q_{131} ,} & {Q_{132} } \\ \end{array} } \right\} = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{13} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{13} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{13} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z, $$
$$ \left\{ {\begin{array}{*{20}c} {Q_{230} ,} & {Q_{231} ,} & {Q_{232} } \\ \end{array} } \right\} = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{23} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{23} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{23} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z, $$
$$ \begin{aligned}& \left\{ {\begin{array}{*{20}c} {Q_{i\,i0} ,} & {Q_{i\,i1} ,} & {Q_{i\,i2} } \\ \end{array} } \right\} & \\ & \quad= \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{ii} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{ii} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z \\ & \qquad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{ii} \left\{ {\begin{array}{*{20}c} {1,} & {z,} & {z^{2} } \\ \end{array} } \right\}{\text{d}}z,\quad (i = 2,3,4,5,6) \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{113} ,} & {Q_{114} ,} & {Q_{115} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{11} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{11} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{11} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{123} ,} & {Q_{124} ,} & {Q_{125} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{12} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{12} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{12} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{133} ,} & {Q_{134} ,} & {Q_{135} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{13} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{13} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{13} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{233} ,} & {Q_{234} ,} & {Q_{235} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{23} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{23} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{23} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{i\,i3} ,} & {Q_{i\,i4} ,} & {Q_{i\,i5} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{i\,i} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{i\,i} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{i\,i} f(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z,\quad (i = 2,3,4,5,6) \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{116} ,} & {Q_{117} ,} & {Q_{118} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{11} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{11} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{11} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{126} ,} & {Q_{127} ,} & {Q_{128} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{12} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{12} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{12} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{116} ,} & {Q_{117} ,} & {Q_{118} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{11} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{11} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{11} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{126} ,} & {Q_{127} ,} & {Q_{128} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{12} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{12} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{12} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{136} ,} & {Q_{137} ,} & {Q_{138} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{13} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{13} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{13} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{236} ,} & {Q_{237} ,} & {Q_{238} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{23} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{23} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{23} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{i\,i6} ,} & {Q_{i\,i7} ,} & {Q_{i\,i8} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{i\,i} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{i\,i} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{i\,i} g^{\prime}(z)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z)} \\ \end{array} } \right\}{\text{d}}z,\quad (i = 2,3,4,5,6) \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{119} ,} & {Q_{1110} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{11} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{11} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{11} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{129} ,} & {Q_{1210} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{12} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{12} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{12} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{139} ,} & {Q_{1310} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{13} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{13} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{13} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{239} ,} & {Q_{2310} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{23} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{23} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{23} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {Q_{i\,i9} ,} & {Q_{i\,i10} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} Q_{i\,i} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2}}} C_{i\,i} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} Q_{i\,i} \left\{ {\begin{array}{*{20}c} {\left[ {\,g^{\prime}(z)} \right]^{2} ,} & {g^{2} (z)} \\ \end{array} } \right\}{\text{d}}z,\quad (i = 2,3,4,5,6) \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {E_{310} ,} & {E_{311} ,} & {E_{313} ,} & {E_{314} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} \frac{\pi }{{h_{\text{f}} }}e_{31} \sin (\frac{\pi z}{{h_{\text{f}} }})\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} \frac{\pi }{{h_{\text{f}} }}e_{31} \sin (\frac{\pi z}{{h_{\text{f}} }})\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {E_{320} ,} & {E_{321} ,} & {E_{323} ,} & {E_{324} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} \frac{\pi }{{h_{\text{f}} }}e_{32} \sin (\frac{\pi z}{{h_{\text{f}} }})\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} \frac{\pi }{{h_{\text{f}} }}e_{32} \sin (\frac{\pi z}{{h_{\text{f}} }})\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {E_{330} ,} & {E_{331} ,} & {E_{333} ,} & {E_{334} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} \frac{\pi }{{h_{\text{f}} }}e_{33} \sin (\frac{\pi z}{{h_{\text{f}} }})\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} \frac{\pi }{{h_{\text{f}} }}e_{33} \sin (\frac{\pi z}{{h_{\text{f}} }})\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {E_{150} ,} & {E_{151} ,} & {E_{153} ,} & {E_{154} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} \frac{\pi }{{h_{\text{f}} }}e_{15} \sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} \frac{\pi }{{h_{\text{f}} }}e_{15} \sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {E_{240} ,} & {E_{241} ,} & {E_{243} ,} & {E_{244} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} \frac{\pi }{{h_{\text{f}} }}e_{24} \sin (\frac{\pi z}{{h_{\text{f}} }})\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} \frac{\pi }{{h_{\text{f}} }}e_{24} \sin (\frac{\pi z}{{h_{\text{f}} }})\left\{ {\begin{array}{*{20}c} {1,} & {z,} & {f(z),} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \left\{ {\begin{array}{*{20}c} {E_{1510} ,} & {E_{2410} } \\ \end{array} } \right\} = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} \sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)g(z)\left\{ {\begin{array}{*{20}c} {e_{15} ,} & {e_{24} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} \sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)g(z)\left\{ {\begin{array}{*{20}c} {e_{15} ,} & {e_{24} } \\ \end{array} } \right\}{\text{d}}z, $$
$$ \left\{ {\begin{array}{*{20}c} {D_{111} ,} & {D_{222} } \\ \end{array} } \right\} = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} \left[ {\sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)} \right]^{2} \left\{ {\begin{array}{*{20}c} {d_{11} ,} & {d_{22} } \\ \end{array} } \right\}{\text{d}}z + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} \left[ {\sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)} \right]^{2} \left\{ {\begin{array}{*{20}c} {d_{11} ,} & {d_{22} } \\ \end{array} } \right\}{\text{d}}z, $$
$$ \begin{aligned} \left\{ {\begin{array}{*{20}c} {D_{333} ,} & {D_{331} } \\ \end{array} } \right\} & = \int_{{\frac{{h_{\text{c}} }}{2}}}^{{\frac{{h_{\text{c}} }}{2} + h_{\text{t}} }} d_{33} \left\{ {\begin{array}{*{20}c} {\left[ {\frac{\pi }{{h_{\text{f}} }}\sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)} \right]^{2} ,} & {\frac{\pi }{{h^{2}_{f} }}\sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)} \\ \end{array} } \right\}{\text{d}}z \\ & \quad + \int_{{ - \frac{{h_{\text{c}} }}{2} - h_{\text{b}} }}^{{ - \frac{{h_{\text{c}} }}{2}}} d_{33} \left\{ {\begin{array}{*{20}c} {\left[ {\frac{\pi }{{h_{\text{f}} }}\sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)} \right]^{2} ,} & {\frac{\pi }{{h^{2}_{f} }}\sin \left( {\frac{\pi z}{{h_{\text{f}} }}} \right)} \\ \end{array} } \right\}{\text{d}}z, \\ \end{aligned} $$
$$ \left\{ {\begin{array}{*{20}c} {T_{1} ,} & {T_{2} ,} & {T_{3} ,} & {T_{4} ,} & {T_{5} } \\ \end{array} } \right\} = \int_{{ - \frac{h}{2}}}^{\frac{h}{2}} \,\mu \left\{ {\begin{array}{*{20}c} {g(z),} & {f^{\prime}(z),} & {g^{2} (z),} & {g(z)f^{\prime}(z),} & {\,f^{\prime}(z)^{2} } \\ \end{array} } \right\}{\text{d}}z, $$
$$ \left\{ {\begin{array}{*{20}c} {T_{6} ,} & {T_{7} ,} & {T_{8} ,} & {T_{9} ,} & {T_{10} } \\ \end{array} } \right\} = \int_{{ - \frac{h}{2}}}^{\frac{h}{2}} \,\mu \left\{ {\begin{array}{*{20}c} {f^{\prime\prime}(z)^{2} ,} & {g^{\prime}(z)f^{\prime\prime}(z),} & {f^{\prime\prime}(z),} & {g^{\prime}(z)^{2} ,} & {g^{\prime}(z)} \\ \end{array} } \right\}{\text{d}}z. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshid, E., Khorasani, M., Soleimani-Javid, Z. et al. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Engineering with Computers 38 (Suppl 5), 4051–4072 (2022). https://doi.org/10.1007/s00366-021-01382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01382-y

Keywords

Navigation