Skip to main content

Advertisement

Log in

Comprehensive Investigation into Garnet Electrolytes Toward Application-Oriented Solid Lithium Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

To satisfy the ever-increasing demand for higher energy density, solid-state batteries (SSBs) have received significant attention due to their potential in providing energy densities greater than 400 Wh kg−1. And as a key material in SSBs, the garnet-type Li7La3Zr2O12 (LLZO) electrolyte is particularly promising because of its high ionic conductivity at room temperature and excellent chemical stability against Li metal. And although great progress has been achieved for garnet electrolytes, many critical issues remain in terms of the practical application of garnet-based SSBs with truly high energy densities. Based on this, this review will provide an overview of the current progress in solid garnet batteries in terms of electrolyte fabrication and interfacial engineering in prototype cells. In addition, various strategies used to meet application requirements are comprehensively reviewed, including not only strategies to enhance energy density, but also methods to enhance rate capability, extend cycle life, decrease cost and reduce thermal runaways. Furthermore, crucial challenges are presented and future research directions are proposed in the development of high-performance solid lithium batteries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission from Ref. [68]. Copyright © 2019 Royal Society of Chemistry

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    CAS  PubMed  Google Scholar 

  2. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    CAS  PubMed  Google Scholar 

  3. Li, H., Wang, Z., Chen, L., et al.: Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009)

    Google Scholar 

  4. USABC goals for advanced high-performance batteries for electric vehicle (EV) applications. https://www.uscar.org/guest/article_view.php?articles_id=85. Accessed 4 July 2019

  5. Sawada, Y., Dougherty, A., Gollub, J.P.: Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56, 1260 (1986)

    CAS  PubMed  Google Scholar 

  6. Fan, L., Zhuang, H.L., Gao, L., et al.: Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 5, 3483–3492 (2017)

    CAS  Google Scholar 

  7. Thangadurai, V., Pinzaru, D., Narayanan, S., et al.: Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage. J. Phys. Chem. Lett. 6, 292–299 (2015)

    CAS  PubMed  Google Scholar 

  8. Thangadurai, V., Narayanan, S., Pinzaru, D.: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014)

    CAS  PubMed  Google Scholar 

  9. Ren, Y., Chen, K., Chen, R., et al.: Oxide electrolytes for lithium batteries. J. Am. Ceram. Soc. 98, 3603–3623 (2015)

    CAS  Google Scholar 

  10. Sun, C., Liu, J., Gong, Y., et al.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017)

    CAS  Google Scholar 

  11. Zhao, W., Yi, J., He, P., et al.: Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2, 574–605 (2019)

    CAS  Google Scholar 

  12. Famprikis, T., Canepa, P., Dawson, J.A., et al.: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1–14 (2019)

    Google Scholar 

  13. Mizuno, F., Hayashi, A., Tadanaga, K., et al.: All-solid-state lithium secondary batteries using Li2S–SiS2–Li4SiO4 glasses and Li2S–P2S5 glass ceramics as solid electrolytes. Solid State Ion. 175, 699–702 (2004)

    CAS  Google Scholar 

  14. Rosciano, F., Pescarmona, P.P., Houthoofd, K., et al.: Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure. Phys. Chem. Chem. Phys. 15, 6107–6112 (2013)

    CAS  PubMed  Google Scholar 

  15. Luntz, A.C., Voss, J., Reuter, K.: Interfacial challenges in solid-state Li ion batteries. ACS Publ. 6, 4599–4604 (2015)

    CAS  Google Scholar 

  16. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016)

    CAS  Google Scholar 

  17. Quartarone, E., Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011)

    CAS  PubMed  Google Scholar 

  18. Shi, S., Gao, J., Liu, Y., et al.: Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B 25, 018212 (2015)

    Google Scholar 

  19. Cheng, X.B., Zhao, C.Z., Yao, Y.X., et al.: Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5, 74–96 (2019)

    CAS  Google Scholar 

  20. Inoue, T., Mukai, K.: Are all-solid-state lithium-ion batteries really safe?–Verification by differential scanning calorimetry with an all-inclusive microcell. ACS Appl. Mater. Interfaces 9, 1507–1515 (2017)

    CAS  PubMed  Google Scholar 

  21. Muramatsu, H., Hayashi, A., Ohtomo, T., et al.: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 182, 116–119 (2011)

    CAS  Google Scholar 

  22. Huo, H., Chen, Y., Li, R., et al.: Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 13, 127–134 (2019)

    Google Scholar 

  23. Liang, J., Li, X., Zhao, Y., et al.: An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries. Adv. Energy Mater. 9, 1902125 (2019)

    CAS  Google Scholar 

  24. Li, J., Ma, C., Chi, M., et al.: Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015)

    Google Scholar 

  25. Liu, T., Zhang, Y., Chen, R., et al.: Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact. Electrochem. Commun. 79, 1–4 (2017)

    CAS  Google Scholar 

  26. Pan, Q., Barbash, D., Smith, D.M., et al.: Correlating electrode–electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries. Adv. Energy Mater. 7, 1701231 (2017)

    Google Scholar 

  27. Janek, J., Zeier, W.G.: A solid future for battery development. Nat. Energy 500, 300 (2016)

    Google Scholar 

  28. Schnell, J., Tietz, F., Singer, C., et al.: Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 12, 1818–1833 (2019)

    CAS  Google Scholar 

  29. Kerman, K., Luntz, A., Viswanathan, V., et al.: Practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017)

    CAS  Google Scholar 

  30. Zhu, H., Prasad, A., Doja, S., et al.: Spark plasma sintering of lithium aluminum germanium phosphate solid electrolyte and its electrochemical properties. Nanomaterials 9, 1086 (2019)

    CAS  PubMed Central  Google Scholar 

  31. Guo, H., Baker, A., Guo, J., et al.: Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS Nano 10, 10606–10614 (2016)

    CAS  PubMed  Google Scholar 

  32. Bron, P., Johansson, S., Zick, K., et al.: Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013)

    CAS  PubMed  Google Scholar 

  33. Boulineau, S., Courty, M., Tarascon, J.M. et al.: Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion. 221, 1–5 (2012)

    CAS  Google Scholar 

  34. Bachman, J.C., Muy, S., Grimaud, A., et al.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2015)

    PubMed  Google Scholar 

  35. Braga, M.H., Grundish, N.S., Murchison, A.J., et al.: Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 10, 331–336 (2017)

    CAS  Google Scholar 

  36. Fan, L., Wei, S., Li, S., et al.: Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018)

    Google Scholar 

  37. Yu, X., Bates, J., Jellison, G., et al.: A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997)

    CAS  Google Scholar 

  38. Li, Y., Xu, H., Chien, P.H., et al.: A perovskite electrolyte that is stable in moist air for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 8587–8591 (2018)

    CAS  Google Scholar 

  39. Kaneko, F., Wada, S., Nakayama, M., et al.: Capacity fading mechanism in all solid-state lithium polymer secondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolytes. Adv. Funct. Mater. 19, 918–925 (2009)

    CAS  Google Scholar 

  40. Thangadurai, V., Kaack, H., Weppner, W.J.: Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003)

    CAS  Google Scholar 

  41. Schmidt, M., Heider, U., Kuehner, A., et al.: Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J. Power Sources 97, 557–560 (2001)

    Google Scholar 

  42. Kothari, D.H., Kanchan, D.: Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7(PO4)3 (LATP) system on Li+ ion conductivity. Physica B Condens. Matter 501, 90–94 (2016)

    CAS  Google Scholar 

  43. Le, H.T., Ngo, D.T., Kalubarme, R.S., et al.: Composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries. ACS Appl. Mater. Interfaces 8, 20710–20719 (2016)

    CAS  PubMed  Google Scholar 

  44. Cai, L., Wen, Z.Y., Kun, R.: High ion conductivity in garnet-type F-doped Li7La3Zr2O12. J. Inorg. Mater. 30, 995–1000 (2015)

    Google Scholar 

  45. Xiong, L., Ren, Z., Xu, Y., et al.: LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity. Solid State Ion. 309, 22–26 (2017)

    CAS  Google Scholar 

  46. Yamada, H., Tsunoe, D., Shiraishi, S., et al.: Reduced grain boundary resistance by surface modification. J. Phys. Chem. C 119, 5412–5419 (2015)

    CAS  Google Scholar 

  47. Jalem, R., Rushton, M., Manalastas Jr., W., et al.: Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chem. Mater. 27, 2821–2831 (2015)

    CAS  Google Scholar 

  48. Qin, S., Zhu, X., Jiang, Y., et al.: Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl. Phys. Lett. 112, 113901 (2018)

    Google Scholar 

  49. Manthiram, A., Yu, X., Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017)

    CAS  Google Scholar 

  50. Gao, Z., Sun, H., Fu, L., et al.: Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018)

    Google Scholar 

  51. Kitaura, H., Zhou, H.: Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode. Energy Environ. Sci. 5(10), 9077–9084 (2012)

    CAS  Google Scholar 

  52. Sun, Z., Liu, L., Lu, Y., et al.: Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor. J. Eur. Ceram. Soc. 39(2–3), 402–408 (2019)

    CAS  Google Scholar 

  53. Xie, J., Imanishi, N., Zhang, T., et al.: Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes. J. Power Sources 189, 365–370 (2009)

    CAS  Google Scholar 

  54. Kanno, R., Murayama, M.: Lithium ionic conductor thio-LISICON: the Li2SGeS2P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001)

    CAS  Google Scholar 

  55. He, Z., Chen, L., Zhang, B., et al.: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 392, 232–238 (2018)

    CAS  Google Scholar 

  56. Tadanaga, K., Egawa, H., Hayashi, A., et al.: Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process. J. Power Sources 273, 844–847 (2015)

    CAS  Google Scholar 

  57. Wang, Z., Wu, M., Liu, G., et al.: Elastic properties of new solid state electrolyte material Li10GeP2S12: a study from first-principles calculations. Int. J. Electrochem. Sci 9, 562–568 (2014)

    Google Scholar 

  58. Zhang, Q., Cao, D., Ma, Y., et al.: Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019)

    CAS  Google Scholar 

  59. Mo, Y., Ong, S.P., Ceder, G.: First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2011)

    Google Scholar 

  60. Du, F., Ren, X., Yang, J., et al.: Structures, thermodynamics, and Li+ mobility of Li10GeP2S12: a first-principles analysis. J. Phys. Chem. C 118, 10590–10595 (2014)

    CAS  Google Scholar 

  61. Wu, F., Fitzhugh, W., Ye, L., et al.: Advanced sulfide solid electrolyte by core–shell structural design. Nat. Commun. 9, 4037 (2018)

    PubMed  PubMed Central  Google Scholar 

  62. Yang, K., Dong, J., Zhang, L., et al.: Dual doping: an effective method to enhance the electrochemical properties of Li10GeP2S12-based solid electrolytes. J. Am. Ceram. Soc. 98, 3831–3835 (2015)

    CAS  Google Scholar 

  63. Hayashi, A., Muramatsu, H., Ohtomo, T., et al.: Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J. Alloys Compd. 591, 247–250 (2014)

    CAS  Google Scholar 

  64. Fenton, D.: Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973)

    CAS  Google Scholar 

  65. Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)

    CAS  Google Scholar 

  66. Zhao, N., Khokhar, W., Bi, Z., et al.: Solid garnet batteries. Joule 3, 1190–1199 (2019)

    CAS  Google Scholar 

  67. Cao, S., Song, S., Xiang, X., et al.: Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: a review. J. Korean Ceram. Soc. 56, 111–129 (2019)

    CAS  Google Scholar 

  68. Samson, A.J., Hofstetter, K., Bag, S., et al.: A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 12, 2957–2975 (2019)

    CAS  Google Scholar 

  69. Wu, J.F., Pang, W.K., Peterson, V.K., et al.: Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl. Mater. Interfaces 9, 12461–12468 (2017)

    CAS  PubMed  Google Scholar 

  70. Yi, M., Liu, T., Li, J., et al.: High Li-ion conductivity of Al-free Li7−3xGaxLa3Zr2O12 solid electrolyte prepared by liquid-phase sintering. J. Solid State Electrochem. 23, 1249–1256 (2019)

    CAS  Google Scholar 

  71. Bernuy-Lopez, C., Manalastas Jr., W., Lopez del Amo, J.M., et al.: Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem. Mater. 26, 3610–3617 (2014)

    CAS  Google Scholar 

  72. Rettenwander, D., Wagner, R., Reyer, A., et al.: Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J. Phys. Chem. C 122, 3780–3785 (2018)

    CAS  Google Scholar 

  73. Zhang, Y., Chen, F., Tu, R., et al.: Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. J. Power Sources 268, 960–964 (2014)

    CAS  Google Scholar 

  74. Xu, B., Duan, H., Xia, W., et al.: Multistep sintering to synthesize fast lithium garnets. J. Power Sources 302, 291–297 (2016)

    CAS  Google Scholar 

  75. Dumon, A., Huang, M., Shen, Y., et al.: High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ion. 243, 36–41 (2013)

    CAS  Google Scholar 

  76. Rangasamy, E., Wolfenstine, J., Allen, J., et al.: The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte. J. Power Sources 230, 261–266 (2013)

    CAS  Google Scholar 

  77. Baek, S., Lee, J.M., Kim, T.Y., et al.: Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J. Power Sources 249, 197–206 (2014)

    CAS  Google Scholar 

  78. Li, Y., Han, J.T., Wang, C.A. et al.: Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012)

    CAS  Google Scholar 

  79. Stanje, B., Rettenwander, D., Breuer, S., et al.: Solid electrolytes: extremely fast charge carriers in garnet-type Li6La3ZrTaO12 single crystals. Annalen der Physik 529, 1700140 (2017)

    Google Scholar 

  80. Ren, Y., Liu, T., Shen, Y., et al.: Garnet-type oxide electrolyte with novel porous-dense bilayer configuration for rechargeable all-solid-state lithium batteries. Ionics 23, 2521–2527 (2017)

    CAS  Google Scholar 

  81. Li, H.Y., Huang, B., Huang, Z., et al.: Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering. Ceram. Int. 45, 18115–18118 (2019)

    CAS  Google Scholar 

  82. Janani, N., Ramakumar, S., Kannan, S., et al.: Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12. J. Am. Ceram. Soc. 98, 2039–2046 (2015)

    CAS  Google Scholar 

  83. Murugan, R., Ramakumar, S., Janani, N.: High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem. Commun. 13, 1373–1375 (2011)

    CAS  Google Scholar 

  84. Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li7−xLa3(Zr2−x, Nbx)O12 (x = 0–2). J. Power Sources 196, 3342–3345 (2011)

    CAS  Google Scholar 

  85. Ramakumar, S., Satyanarayana, L., Manorama, S.V., et al.: Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys. Chem. Chem. Phys. 15, 11327–11338 (2013)

    CAS  PubMed  Google Scholar 

  86. Cao, Z.Z., Ren, W., Liu, J., et al.: Microstructure and ionic conductivity of Sb-doped Li7La3Zr2O12 ceramics. J. Inorg. Mater. 29, 220–224 (2014)

    CAS  Google Scholar 

  87. Liu, X., Li, Y., Yang, T., et al.: High lithium ionic conductivity in the garnet-type oxide Li7−2xLa3Zr2−xMoxO12 (x = 0.3) ceramics by sol–gel method. J. Am. Ceram. Soc. 100, 1527–1533 (2017)

    CAS  Google Scholar 

  88. Hu, S., Li, Y.F., Yang, R., et al.: Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceram. Int. 44, 6614–6618 (2018)

    CAS  Google Scholar 

  89. Luo, Y., Li, X., Chen, H., et al.: Influence of sintering aid on the microstructure and conductivity of the garnet-type W-doped Li7La3Zr2O12 ceramic electrolyte. J. Mater. Sci. Mater. Electron. 30, 17195–17201 (2019)

    CAS  Google Scholar 

  90. Yang, T., Li, Y., Wu, W., et al.: The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceram. Int. 44, 1538–1544 (2018)

    CAS  Google Scholar 

  91. Chen, X., Wang, T., Lu, W., et al.: Synthesis of Ta and Ca doped Li7La3Zr2O12 solid-state electrolyte via simple solution method and its application in suppressing shuttle effect of Li-S battery. J. Alloys Compd. 744, 386–394 (2018)

    CAS  Google Scholar 

  92. Allen, J.L., Wolfenstine, J., Rangasamy, E., et al.: Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 206, 315–319 (2012)

    CAS  Google Scholar 

  93. Jonson, R.A., McGinn, P.J.: Tape casting and sintering of Li7La3Zr1.75Nb0.25Al0.1O12 with Li3BO3 additions. Solid State Ion. 323, 49–55 (2018)

    CAS  Google Scholar 

  94. Hofstetter, K., Samson, A.J., Thangadurai, V.: Characterization of lithium-rich garnet-type Li6.5La2.5Ba0.5ZrTaO12 for beyond intercalation chemistry-based lithium-ion batteries. Solid State Ion. 318, 71–81 (2018)

    CAS  Google Scholar 

  95. Gai, J., Zhao, E., Ma, F., et al.: Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site. J. Eur. Ceram. Soc. 38, 1673–1678 (2018)

    CAS  Google Scholar 

  96. Im, C., Park, D., Kim, H., et al.: Al-incorporation into Li7La3Zr2O12 solid electrolyte keeping stabilized cubic phase for all-solid-state Li batteries. J. Nat. Gas. Chem. 27, 1501–1508 (2018)

    Google Scholar 

  97. Wolfenstine, J., Ratchford, J., Rangasamy, E., et al.: Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Mater. Chem. Phys. 134, 571–575 (2012)

    CAS  Google Scholar 

  98. Rettenwander, D., Geiger, C., Tribus, M., et al.: The solubility and site preference of Fe3+ in Li7−3xFexLa3Zr2O12 garnets. J. Solid State Chem. 230, 266–271 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tafaroji, S., Farbod, M., Kazeminezhad, I., et al.: Effect of pre-sintering temperature and ball-milling on the conductivity of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode for solid oxide fuel cells prepared by sol–gel thermolysis method. Mater. Res. Express 6, 095522 (2019)

    CAS  Google Scholar 

  100. Du, F., Zhao, N., Li, Y., et al.: All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J. Power Sources 300, 24–28 (2015)

    CAS  Google Scholar 

  101. Huang, X., Xiu, T., Badding, M.E., et al.: Two-step sintering strategy to prepare dense Li–Garnet electrolyte ceramics with high Li+ conductivity. Ceram. Int. 44, 5660–5667 (2018)

    CAS  Google Scholar 

  102. Chen, X., Cao, T., Xue, M., et al.: Improved room temperature ionic conductivity of Ta and Ca doped Li7La3Zr2O12 via a modified solution method. Solid State Ion. 314, 92–97 (2018)

    CAS  Google Scholar 

  103. Huang, X., Lu, Y., Song, Z., et al.: Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: sintering, microstructure, performance and the role of MgO. J. Nat. Gas. Chem. 39, 8–16 (2019)

    Google Scholar 

  104. Lin, J., Wu, L., Huang, Z., et al.: La2Zr2O7 and MgO co-doped composite Li–garnet solid electrolyte. J. Nat. Gas. Chem. 40, 132–136 (2020)

    Google Scholar 

  105. Li, Y., Cao, Y., Guo, X.: Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes. Solid State Ion. 253, 76–80 (2013)

    CAS  Google Scholar 

  106. Huang, X., Lu, Y., Song, Z., et al.: Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte. Energy Storage Mater. 22, 207–217 (2019)

    Google Scholar 

  107. Wakudkar, P., Deshpande, A.: Enhancement of ionic conductivity by addition of LiAlO2 in Li6.6La3Zr1.6Sb0.4O12 for lithium ion battery. Solid State Ion. 345, 115185 (2020)

    CAS  Google Scholar 

  108. Muccillo, R., Muccillo, E.: An experimental setup for shrinkage evaluation during electric field-assisted flash sintering: application to yttria-stabilized zirconia. J. Eur. Ceram. Soc. 33, 515–520 (2013)

    CAS  Google Scholar 

  109. Zhou, D., Shanmukaraj, D., Tkacheva, A., et al.: Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019)

    CAS  Google Scholar 

  110. Wright, P.V.: Electrical conductivity in ionic complexes of poly(ethylene oxide). Brit. Polym. J. 7, 319–327 (1975)

    CAS  Google Scholar 

  111. Zhang, J., Zhao, N., Zhang, M., et al.: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016)

    CAS  Google Scholar 

  112. Kim, Y.: Enabling higher energy and power density lithium ion batteries through electrode design and the integration of solid-state electrolytes. Michigan State University (2015)

  113. Lopez, J., Pei, A., Oh, J.Y., et al.: Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018)

    CAS  PubMed  Google Scholar 

  114. Huang, Z., Pang, W., Liang, P., et al.: A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. J. Mater. Chem. A 7, 16425–16436 (2019)

    CAS  Google Scholar 

  115. Huo, H., Zhao, N., Sun, J., et al.: Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J. Power Sources 372, 1–7 (2017)

    CAS  Google Scholar 

  116. Kun, K., Gong, Y., Dai, J., et al.: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. 113, 201600422 (2016)

    Google Scholar 

  117. Li, R., Guo, S., Yu, L., et al.: Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 6, 1900200 (2019)

    Google Scholar 

  118. Zhao, Y., Yan, J., Cai, W., et al.: Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater. 23, 306–313 (2019)

    Google Scholar 

  119. Liu, W., Lee, S.W., Lin, D., et al.: Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017)

    CAS  Google Scholar 

  120. Christie, A.M., Lilley, S.J., Staunton, E., et al.: Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005)

    CAS  PubMed  Google Scholar 

  121. Wang, L., Li, X., Yang, W.: Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries. Electrochim. Acta 55, 1895–1899 (2010)

    CAS  Google Scholar 

  122. Zhang, J., Zang, X., Wen, H., et al.: High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5, 4940–4948 (2017)

    CAS  Google Scholar 

  123. Huo, H., Sun, J., Chen, C., et al.: Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries. J. Power Sources 383, 150–156 (2018)

    CAS  Google Scholar 

  124. Zhang, X., Liu, T., Zhang, S., et al.: Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017)

    CAS  PubMed  Google Scholar 

  125. Wegener, M., Küunstler, W., Gerhard-Multhaupt, R.: Poling behavior and optical absorption of partially dehydrofluorinated and uniaxially stretched polyvinylidene fluoride. Ferroelectrics 336, 3–8 (2006)

    CAS  Google Scholar 

  126. Hong, S.E., Kim, D.K., Jo, S.M., et al.: Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity. Catal. Today 120, 413–419 (2007)

    CAS  Google Scholar 

  127. Chiang, C.Y., Reddy, M.J., Chu, P.P.: Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ion. 175, 631–635 (2004)

    CAS  Google Scholar 

  128. Yue, L., Ma, J., Zhang, J., et al.: All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016)

    Google Scholar 

  129. Zheng, J., Tang, M., Hu, Y.Y.: Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016)

    CAS  Google Scholar 

  130. Chen, L., Li, Y., Li, S.P., et al.: PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46, 176–184 (2018)

    CAS  Google Scholar 

  131. Huo, H., Chen, Y., Luo, J., et al.: Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 9, 1804004 (2019)

    Google Scholar 

  132. Kalnaus, S., Sabau, A.S., Tenhaeff, W.E., et al.: Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. J. Power Sources 201, 280–287 (2012)

    CAS  Google Scholar 

  133. Zheng, J., Hu, Y.Y.: New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018)

    CAS  PubMed  Google Scholar 

  134. Richards, W.D., Miara, L.J., Wang, Y., et al.: Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2015)

    Google Scholar 

  135. Zhu, Y., He, X., Mo, Y.: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015)

    CAS  PubMed  Google Scholar 

  136. Miara, L.J., Richards, W.D., Wang, Y.E., et al.: First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets. Chem. Mater. 27, 4040–4047 (2015)

    CAS  Google Scholar 

  137. Zhu, Y., He, X., Mo, Y.: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016)

    CAS  Google Scholar 

  138. Xiao, Y., Wang, Y., Bo, S.H., et al.: Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020)

    CAS  Google Scholar 

  139. Kotobuki, M., Munakata, H., Kanamura, K., et al.: Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J. Electrochem. Soc. 157, A1076–A1079 (2010)

    CAS  Google Scholar 

  140. Cheng, L., Chen, W., Kunz, M., et al.: Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl. Mater. Interfaces 7, 2073–2081 (2015)

    CAS  PubMed  Google Scholar 

  141. Alexander, G.V., Patra, S., Raj, S.V.S., et al.: Electrodes–electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. J. Power Sources 396, 764–773 (2018)

    CAS  Google Scholar 

  142. Zhao, C.Z., Duan, H., Huang, J.Q., et al.: Designing solid-state interfaces on lithium-metal anodes: a review. Sci. China Chem. 62, 1286–1299 (2019)

    CAS  Google Scholar 

  143. Zhao, C.Z., Chen, P.Y., Zhang, R., et al.: An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4, eaat3446 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Cheng, L., Crumlin, E.J., Chen, W., et al.: The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. PCCP 16, 18294–18300 (2014)

    CAS  PubMed  Google Scholar 

  145. Han, X., Gong, Y., Fu, K.K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572 (2017)

    CAS  PubMed  Google Scholar 

  146. Tsai, C.L., Roddatis, V., Chandran, C.V., et al.: Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016)

    CAS  PubMed  Google Scholar 

  147. He, M., Cui, Z., Chen, C., et al.: Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J. Mater. Chem. A 6, 11463–11470 (2018)

    CAS  Google Scholar 

  148. Zhou, W., Zhu, Y., Grundish, N., et al.: Polymer lithium–garnet interphase for an all-solid-state rechargeable battery. Nano Energy 53, 926–931 (2018)

    CAS  Google Scholar 

  149. Liu, B., Gong, Y., Fu, K., et al.: Garnet solid electrolyte protected Li-metal batteries. ACS Appl. Mater. Interfaces 9, 18809–18815 (2017)

    CAS  PubMed  Google Scholar 

  150. Xu, H., Li, Y., Zhou, A., et al.: Li3N-modified garnet electrolyte for all-solid-state lithium metal batteries operated at 40 °C. Nano Lett. 18, 7414–7418 (2018)

    CAS  PubMed  Google Scholar 

  151. Chen, Y., He, M., Zhao, N., et al.: Nanocomposite intermediate layers formed by conversion reaction of SnO2 for Li/garnet/Li cycle stability. J. Power Sources 420, 15–21 (2019)

    CAS  Google Scholar 

  152. Luo, W., Gong, Y., Zhu, Y., et al.: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138, 12258–12262 (2016)

    CAS  PubMed  Google Scholar 

  153. Fu, K., Gong, Y., Fu, Z., et al.: Transient behavior of the metal interface in lithium metal–garnet batteries. Angew. Chem. Int. Ed. 56, 14942–14947 (2017)

    CAS  Google Scholar 

  154. Zhao, N., Fang, R., He, M.-H., et al.: Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met. 37, 473–479 (2018)

    CAS  Google Scholar 

  155. Wang, C., Gong, Y., Liu, B., et al.: Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2016)

    PubMed  Google Scholar 

  156. Shao, Y., Wang, H., Gong, Z., et al.: Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 3, 1212–1218 (2018)

    CAS  Google Scholar 

  157. Huo, H., Chen, Y., Li, R., et al.: Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 13, 127–134 (2020)

    CAS  Google Scholar 

  158. Pervez, S.A., Ganjeh-Anzabi, P., Farooq, U., et al.: Fabrication of a dendrite-free all solid-state Li metal battery via polymer composite/garnet/polymer composite layered electrolyte. Adv. Mater. Interfaces 6, 1900186 (2019)

    Google Scholar 

  159. Jin, Y., Liu, K., Lang, J., et al.: An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat. Energy 3, 732 (2018)

    CAS  Google Scholar 

  160. Jin, Y., Liu, K., Lang, J., et al.: High-energy-density solid-electrolyte-based liquid Li–S and Li–Se batteries. Joule 4, 262–274 (2019)

    Google Scholar 

  161. Li, S., Wang, H., Cuthbert, J., et al.: A semiliquid lithium metal anode. Joule 3, 1637–1646 (2019)

    CAS  Google Scholar 

  162. Duan, J., Wu, W., Nolan, A.M., et al.: Lithium–graphite paste: an interface compatible anode for solid-state batteries. Adv. Mater. 31, 1807243 (2019)

    Google Scholar 

  163. Yang, C., Xie, H., Ping, W., et al.: An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 31, 1804815 (2018)

    Google Scholar 

  164. Kotobuki, M., Kanamura, K.: Fabrication of all-solid-state battery using Li5La3Ta2O12 ceramic electrolyte. Ceram. Int. 39, 6481–6487 (2013)

    CAS  Google Scholar 

  165. Kotobuki, M., Kanamura, K., Sato, Y., et al.: Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J. Power Sources 196, 7750–7754 (2011)

    CAS  Google Scholar 

  166. Rangasamy, E., Sahu, G., Keum, J.K., et al.: A high conductivity oxide–sulfide composite lithium superionic conductor. J. Mater. Chem. A 2, 4111–4116 (2014)

    CAS  Google Scholar 

  167. Jalem, R., Morishita, Y., Okajima, T., et al.: Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon. J. Mater. Chem. A 4, 14371–14379 (2016)

    CAS  Google Scholar 

  168. Han, F., Zhu, Y., He, X., et al.: Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016)

    Google Scholar 

  169. Schwietert, T.K., Arszelewska, V.A., Wang, C., et al.: Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020)

    CAS  PubMed  Google Scholar 

  170. Ohta, S., Kobayashi, T., Seki, J., et al.: Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power Sources 202, 332–335 (2012)

    CAS  Google Scholar 

  171. Park, K., Yu, B.C., Jung, J.W., et al.: Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet–Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016)

    CAS  Google Scholar 

  172. Deng, Y.F., Zhao, S.X., Xu, Y.H., et al.: Effect of the morphology of Li–La–Zr–O solid electrolyte coating on the electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 cathode materials. J. Mater. Chem. A 2, 18889–18897 (2014)

    CAS  Google Scholar 

  173. Kato, T., Hamanaka, T., Yamamoto, K., et al.: In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J. Power Sources 260, 292–298 (2014)

    CAS  Google Scholar 

  174. Han, F., Yue, J., Chen, C., et al.: Interphase engineering enabled all-ceramic lithium battery. Joule 2, 497–508 (2018)

    CAS  Google Scholar 

  175. He, M., Cui, Z., Han, F., et al.: Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries. J. Alloys Compd. 762, 157–162 (2018)

    CAS  Google Scholar 

  176. Wang, D., Sun, Q., Luo, J., et al.: Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries. ACS Appl. Mater. Interfaces 11, 4954–4961 (2019)

    CAS  PubMed  Google Scholar 

  177. Dong, L., Chao, L., Hua, L., et al.: Recent advancements in interface between cathode and garnet solid electrolyte for all solid state Li-ion batteries. J. Inorg. Mater. 34, 694–702 (2019)

    Google Scholar 

  178. Bi, Z., Zhao, N., Ma, L., et al.: Interface engineering on cathode side for solid garnet batteries. Chem. Eng. J. 387, 124089 (2020)

    CAS  Google Scholar 

  179. Huo, H., Luo, J., Thangadurai, V., et al.: Li2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett. 5, 252–262 (2020)

    CAS  Google Scholar 

  180. Li, Y., Xu, B., Xu, H., et al.: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753–756 (2017)

    CAS  Google Scholar 

  181. Wu, J.F., Pu, B.W., Wang, D., et al.: In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl. Mater. Interfaces 11, 898–905 (2018)

    PubMed  Google Scholar 

  182. Sharafi, A., Kazyak, E., Davis, A.L., et al.: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017)

    CAS  Google Scholar 

  183. Rao, R.P., Gu, W., Sharma, N., et al.: In situ neutron diffraction monitoring of Li7La3Zr2O12 formation: toward a rational synthesis of garnet solid electrolytes. Chem. Mater. 27, 2903–2910 (2015)

    CAS  Google Scholar 

  184. Li, Y., Chen, X., Dolocan, A., et al.: Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 140, 6448–6455 (2018)

    CAS  PubMed  Google Scholar 

  185. Cheng, L., Liu, M., Mehta, A., et al.: Garnet electrolyte surface degradation and recovery. ACS Appl. Energy Mater. 1, 7244–7252 (2018)

    CAS  Google Scholar 

  186. Huo, H., Chen, Y., Zhao, N., et al.: In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy 61, 119–125 (2019)

    CAS  Google Scholar 

  187. Ahn, C.W., Choi, J.J., Ryu, J., et al.: Electrochemical properties of Li7La3Zr2O12-based solid state battery. J. Power Sources 272, 554–558 (2014)

    CAS  Google Scholar 

  188. Chen, C., Li, Q., Li, Y., et al.: Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries. ACS Appl. Mater. Interfaces 10, 2185–2190 (2018)

    CAS  PubMed  Google Scholar 

  189. Luo, W., Gong, Y., Zhu, Y., et al.: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017)

    Google Scholar 

  190. Duan, H., Yin, Y.X., Shi, Y., et al.: Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 140, 82–85 (2017)

    PubMed  Google Scholar 

  191. Fu, K.K., Gong, Y., Liu, B., et al.: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, 1601659 (2017)

    Google Scholar 

  192. Xu, B., Duan, H., Liu, H., et al.: Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl. Mater. Interfaces 9, 21077–21082 (2017)

    CAS  PubMed  Google Scholar 

  193. Ohta, S., Komagata, S., Seki, J., et al.: All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013)

    CAS  Google Scholar 

  194. Ohta, S., Seki, J., Yagi, Y., et al.: Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J. Power Sources 265, 40–44 (2014)

    CAS  Google Scholar 

  195. Luo, Y., Li, X., Zhang, Y., et al.: Electrochemical properties and structural stability of Ga-and Y-co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries. Electrochim. Acta 294, 217–225 (2019)

    CAS  Google Scholar 

  196. Hao, S., Zhang, H., Yao, W., et al.: Solid-state lithium battery chemistries achieving high cycle performance at room temperature by a new garnet-based composite electrolyte. J. Power Sources 393, 128–134 (2018)

    CAS  Google Scholar 

  197. Indu, M., Alexander, G.V., Deviannapoorani, C., et al.: Realization of room temperature lithium metal battery with high Li+ conductive lithium garnet solid electrolyte. Ceram. Int. 45, 22610–22616 (2019)

    CAS  Google Scholar 

  198. Liu, T., Zhang, Y., Zhang, X., et al.: Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. J. Mater. Chem. A 6, 4649–4657 (2018)

    CAS  Google Scholar 

  199. Li, Y., Wang, Z., Cao, Y., et al.: W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochim. Acta 180, 37–42 (2015)

    CAS  Google Scholar 

  200. Guo, X., Hao, L., Yang, Y., et al.: High cathode utilization efficiency through interface engineering in all-solid-state lithium-metal batteries. J. Mater. Chem. A 7, 25915–25924 (2019)

    CAS  Google Scholar 

  201. Feng, W., Dong, X., Li, P., et al.: Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. J. Power Sources 419, 91–98 (2019)

    CAS  Google Scholar 

  202. Liu, B., Fu, K., Gong, Y., et al.: Rapid thermal annealing of cathode–garnet interface toward high-temperature solid state batteries. Nano Lett. 17, 4917–4923 (2017)

    CAS  PubMed  Google Scholar 

  203. Fu, K.K., Gong, Y., Hitz, G.T., et al.: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017)

    CAS  Google Scholar 

  204. Huang, X., Lu, Y., Jin, J., et al.: Method using water-based solvent to prepare Li7La3Zr2O12 solid electrolytes. ACS Appl. Mater. Interfaces 10, 17147–17155 (2018)

    CAS  PubMed  Google Scholar 

  205. Sun, J., Zhao, N., Li, Y., et al.: A rechargeable Li–air fuel cell battery based on garnet solid electrolytes. Sci. Rep. 7, 41217 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Liu, Y., Lin, D., Jin, Y., et al.: Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Sci. Adv. 3, 713 (2017)

    Google Scholar 

  207. Cheng, S.H.S., He, K.Q., Liu, Y., et al.: Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochim. Acta 253, 430–438 (2017)

    CAS  Google Scholar 

  208. Zhang, W., Nie, J., Li, F., et al.: A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45, 413–419 (2018)

    CAS  Google Scholar 

  209. Fu, X., Li, Y., Liao, C., et al.: Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network. Compos. Sci. Technol. 184, 107863 (2019)

    CAS  Google Scholar 

  210. Chi, S.S., Liu, Y., Zhao, N., et al.: Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Mater. 17, 309–316 (2019)

    Google Scholar 

  211. Song, S., Wu, Y., Tang, W., et al.: Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustain. Chem. Eng. 7, 7163–7170 (2019)

    CAS  Google Scholar 

  212. Li, Y., Zhang, W., Dou, Q., et al.: Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 7, 3391–3398 (2019)

    CAS  Google Scholar 

  213. Sun, J., Li, Y., Zhang, Q., et al.: A highly ionic conductive poly (methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem. Eng. J. 375, 121922 (2019)

    CAS  Google Scholar 

  214. Karthik, K., Murugan, R.: Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. J. Solid State Electrochem. 22, 2989–2998 (2018)

    CAS  Google Scholar 

  215. Zhang, B., Chen, L., Hu, J., et al.: Solid-state lithium metal batteries enabled with high loading composite cathode materials and ceramic-based composite electrolytes. J. Power Sources 442, 227230 (2019)

    CAS  Google Scholar 

  216. Chen, H., Jing, M., Han, C., et al.: A novel organic/inorganic composite solid electrolyte with functionalized layers for improved room-temperature rate performance of solid-state lithium battery. Int. J. Energy Res. 43, 5912–5921 (2019)

    CAS  Google Scholar 

  217. Kim, D.H., Kim, M.Y., Yang, S.H., et al.: Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. J. Ind. Eng. Chem. 71, 445–451 (2019)

    CAS  Google Scholar 

  218. Jing, M.X., Yang, H., Han, C., et al.: Synergistic enhancement effects of LLZO fibers and interfacial modification for polymer solid electrolyte on the ambient-temperature electrochemical performances of solid-state battery. J. Electrochem. Soc. 166, A3019–A3027 (2019)

    CAS  Google Scholar 

  219. Gong, Y., Fu, K., Xu, S., et al.: Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Mater. Today 21, 594–601 (2018)

    CAS  Google Scholar 

  220. Tao, X., Liu, Y., Liu, W., et al.: Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017)

    CAS  PubMed  Google Scholar 

  221. Yamada, A., Chung, S.C., Hinokuma, K.: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001)

    CAS  Google Scholar 

  222. Nitta, N., Wu, F., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)

    CAS  Google Scholar 

  223. Du, F., Zhao, N., Fang, R., et al.: Influence of electronic conducting additives on cycle performance of garnet-based solid lithium batteries. J. Inorg. Mater. 33, 462–468 (2018)

    Google Scholar 

  224. Zhang, X.D., Shi, J.L., Liang, J.Y., et al.: An effective LiBO2 coating to ameliorate the cathode/electrolyte interfacial issues of LiNi0.6Co0.2Mn0.2O2 in solid-state Li batteries. J. Power Sources 426, 242–249 (2019)

    CAS  Google Scholar 

  225. Chen, S., Niu, C., Lee, H., et al.: Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 3, 1094–1105 (2019)

    CAS  Google Scholar 

  226. Schnell, J., Günther, T., Knoche, T., et al.: All-solid-state lithium-ion and lithium metal batteries—paving the way to large-scale production. J. Power Sources 382, 160–175 (2018)

    CAS  Google Scholar 

  227. Kazyak, E., Chen, K.H., Wood, K.N., et al.: Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12. Chem. Mater. 29, 3785–3792 (2017)

    CAS  Google Scholar 

  228. Tan, J., Tiwari, A.: Characterization of Li7La3Zr2O12 thin films prepared by pulsed laser deposition. MRS Online Proce. Libr. Arch. 1471, 37–42 (2012)

    Google Scholar 

  229. Nong, J., Xu, H., Yu, Z., et al.: Properties and preparation of Li–La–Ti–Zr–O thin film electrolyte. Mater. Lett. 154, 167–169 (2015)

    CAS  Google Scholar 

  230. Loho, C., Djenadic, R., Bruns, M., et al.: Garnet-type Li7La3Zr2O12 solid electrolyte thin films grown by CO2-laser assisted CVD for all-solid-state batteries. J. Electrochem. Soc. 164, A6131–A6139 (2017)

    CAS  Google Scholar 

  231. Sastre, J., Lin, T.Y., Filippin, A.N., et al.: Aluminum-assisted densification of co-sputtered lithium garnet electrolyte films for solid-state batteries. ACS Appl. Energy Mater. 2, 8511–8524 (2019)

    CAS  Google Scholar 

  232. Lobe, S., Dellen, C., Finsterbusch, M., et al.: Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. J. Power Sources 307, 684–689 (2016)

    CAS  Google Scholar 

  233. Park, J.S., Cheng, L., Zorba, V., et al.: Effects of crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films. Thin Solid Films 576, 55–60 (2015)

    CAS  Google Scholar 

  234. Buannic, L., Naviroj, M., Miller, S.M., et al.: Dense freeze-cast Li7La3Zr2O12 solid electrolytes with oriented open porosity and contiguous ceramic scaffold. J. Am. Ceram. Soc. 102, 1021–1029 (2019)

    CAS  Google Scholar 

  235. Shen, H., Yi, E., Amores, M., et al.: Oriented porous LLZO 3D structures obtained by freeze casting for battery applications. J. Mater. Chem. A 7, 20861–20870 (2019)

    CAS  Google Scholar 

  236. Chen, F., Cao, S., Xiang, X., et al.: The tape-casting and pas sintering of LLZO ceramic membrane electrolyte. Ceram. Eng. Sci. Proc. 2, 223 (2018)

    Google Scholar 

  237. Yan, X., Li, Z., Wen, Z., et al.: Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J. Phys. Chem. C 121, 1431–1435 (2017)

    CAS  Google Scholar 

  238. Yan, X., Li, Z., Ying, H., et al.: A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. Ionics 24, 1545–1551 (2018)

    CAS  Google Scholar 

  239. Gao, K., He, M., Li, Y., et al.: Preparation of high-density garnet thin sheet electrolytes for all-solid-state Li-metal batteries by tape-casting technique. J. Alloys Compd. 791, 923–928 (2019)

    CAS  Google Scholar 

  240. Yi, E., Wang, W., Kieffer, J., et al.: Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). J. Mater. Chem. A 4, 12947–12954 (2016)

    CAS  Google Scholar 

  241. Pfenninger, R., Struzik, M., Garbayo, I., et al.: A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 4, 475–483 (2019)

    CAS  Google Scholar 

  242. He, K., Xie, P., Zu, C., et al.: A facile and scalable process to synthesize flexible lithium ion conductive glass-ceramic fibers. RSC Adv. 9, 4157–4161 (2019)

    CAS  Google Scholar 

  243. Sun, Y., Zhan, X., Hu, J., et al.: Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl. Mater. Interfaces 11, 12467–12475 (2019)

    CAS  PubMed  Google Scholar 

  244. Yang, X., Chen, Y., Wang, M., et al.: Phase inversion: a universal method to create high-performance porous electrodes for nanoparticle-based energy storage devices. Adv. Funct. Mater. 26, 8427–8434 (2016)

    CAS  Google Scholar 

  245. Yang, X., Zhang, H., Chen, Y., et al.: Shapeable electrodes with extensive materials options and ultra-high loadings for energy storage devices. Nano Energy 39, 418–428 (2017)

    CAS  Google Scholar 

  246. Gao, X., Sun, Q., Yang, X., et al.: Toward a remarkable Li–S battery via 3D printing. Nano Energy 56, 595–603 (2019)

    CAS  Google Scholar 

  247. Bu, J., Leung, P., Huang, C., et al.: Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications. J. Mater. Chem. A 7, 19094–19103 (2019)

    CAS  Google Scholar 

  248. Yang, X., Sun, Q., Zhao, C., et al.: High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes. Nano Energy 61, 567–575 (2019)

    CAS  Google Scholar 

  249. Wu, X., Xia, S., Huang, Y., et al.: High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv. Funct. Mater. 29, 1903961 (2019)

    Google Scholar 

  250. Goodenough, J.B.: Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2012)

    PubMed  Google Scholar 

  251. Taylor, N.J., Stangeland-Molo, S., Haslam, C.G., et al.: Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J. Power Sources 396, 314–318 (2018)

    CAS  Google Scholar 

  252. Ishiguro, K., Nakata, Y., Matsui, M., et al.: Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal. J. Electrochem. Soc. 160, A1690–A1693 (2013)

    CAS  Google Scholar 

  253. Ren, Y., Shen, Y., Lin, Y., et al.: Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015)

    CAS  Google Scholar 

  254. Xu, R., Xiao, Y., Zhang, R., et al.: Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater. 31, 1808392 (2019)

    Google Scholar 

  255. Zhao, C.Z., Zhang, X.Q., Cheng, X.B., et al.: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. 114, 11069 (2017)

    CAS  PubMed  Google Scholar 

  256. Wang, C., Gong, Y., Dai, J., et al.: In situ neutron depth profiling of lithium metal–garnet interfaces for solid state batteries. J. Am. Chem. Soc. 139, 14257–14264 (2017)

    CAS  PubMed  Google Scholar 

  257. Shen, F., Dixit, M.B., Xiao, X., et al.: Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 3, 1056–1061 (2018)

    CAS  Google Scholar 

  258. Cheng, E.J., Sharafi, A., Sakamoto, J.: Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017)

    CAS  Google Scholar 

  259. Deng, Z., Wang, Z., Chu, I.H., et al.: Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2016)

    CAS  Google Scholar 

  260. Porz, L., Swamy, T., Sheldon, B.W., et al.: Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017)

    Google Scholar 

  261. Wang, X., Zeng, W., Hong, L., et al.: Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227 (2018)

    CAS  Google Scholar 

  262. Manalastas Jr., W., Rikarte, J., Chater, R.J., et al.: Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy. J. Power Sources 412, 287–293 (2019)

    CAS  Google Scholar 

  263. Aguesse, F., Manalastas, W., Buannic, L., et al.: Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 9, 3808–3816 (2017)

    CAS  PubMed  Google Scholar 

  264. Tian, H.K., Xu, B., Qi, Y.: Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources 392, 79–86 (2018)

    CAS  Google Scholar 

  265. Han, F., Westover, A.S., Yue, J., et al.: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187 (2019)

    CAS  Google Scholar 

  266. Song, Y., Yang, L., Zhao, W., et al.: Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv. Energy Mater. 9, 1900671 (2019)

    Google Scholar 

  267. Lu, Y., Huang, X., Ruan, Y., et al.: An in situ element permeation constructed high endurance Li–LLZO interface at high current densities. J. Mater. Chem. A 6, 18853–18858 (2018)

    CAS  Google Scholar 

  268. Suzuki, Y., Kami, K., Watanabe, K., et al.: Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ion. 278, 172–176 (2015)

    CAS  Google Scholar 

  269. Fu, J., Yu, P., Zhang, N., et al.: In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy Environ. Sci. 12, 1404–1412 (2019)

    CAS  Google Scholar 

  270. Jiang, Z., Xie, H., Wang, S., et al.: Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018)

    Google Scholar 

  271. Zekoll, S., Marriner-Edwards, C., Hekselman, A.O., et al.: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018)

    CAS  Google Scholar 

  272. Liu, B., Zhang, L., Xu, S., et al.: 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. Energy Storage Mater. 14, 376–382 (2018)

    Google Scholar 

  273. Zhang, Y.P., Li, Y., Cui, Z., et al.: A porous framework infiltrating Li–O2 battery: a low-resistance and high-safety system. Sustain. Energy Fuels 4, 1600–1606 (2020)

    CAS  Google Scholar 

  274. Hitz, G.T., McOwen, D.W., Zhang, L., et al.: High-rate lithium cycling in a scalable trilayer Li–garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019)

    CAS  Google Scholar 

  275. Yang, C., Zhang, L., Liu, B., et al.: Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. 115, 3770–3775 (2018)

    CAS  PubMed  Google Scholar 

  276. Yang, C., Xie, H., Ping, W., et al.: An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 31, 1804815 (2019)

    Google Scholar 

  277. Song, Y., Yang, L., Zhao, W., et al.: Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv. Energy Mater. 21, 1900671 (2019)

    Google Scholar 

  278. Huo, H.Y., Wu, B., Zhang, T., et al.: Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 18, 59–67 (2019)

    Google Scholar 

  279. Rosso, M., Brissot, C., Teyssot, A., et al.: Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 51, 5334–5340 (2006)

    CAS  Google Scholar 

  280. Brissot, C., Rosso, M., Chazalviel, J.N., et al.: Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999)

    Google Scholar 

  281. Monroe, C., Newman, J.: Dendrite growth in lithium/polymer systems a propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 150, A1377–A1384 (2003)

    CAS  Google Scholar 

  282. Ebadi, M., Marchiori, C., Mindemark, J., et al.: Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations. J. Mater. Chem. A 7, 8394–8404 (2019)

    CAS  Google Scholar 

  283. Qu, H., Ju, J., Chen, B., et al.: Inorganic separators enable significantly suppressed polysulfide shuttling in high-performance lithium–sulfur batteries. J. Mater. Chem. A 6, 23720–23729 (2018)

    CAS  Google Scholar 

  284. Xu, S., McOwen, D.W., Zhang, L., et al.: All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater. 15, 458–464 (2018)

    Google Scholar 

  285. Chung, H., Kang, B.: Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chem. Mater. 29, 8611–8619 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFB0104300), the National Natural Science Foundation of China (Grant Nos. U1932205 and 51771222), the Natural Science Foundation of Shandong Province (Grant No. ZR201702180185), the China Postdoctoral Science Foundation (Grant No. 2018M632617), the ‘‘Taishan Scholars Program’’ and the Project of Qingdao Leading Talents in Entrepreneurship and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanyu Huo or Xiangxin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Zhao, N., Huo, H. et al. Comprehensive Investigation into Garnet Electrolytes Toward Application-Oriented Solid Lithium Batteries. Electrochem. Energ. Rev. 3, 656–689 (2020). https://doi.org/10.1007/s41918-020-00076-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00076-1

Keywords

Navigation