Iturrondobeitia, A., Aguesse, F., Genies, S., et al.: Post-mortem analysis of calendar-aged 16 Ah NMC/graphite pouch cells for EV application. J. Phys. Chem. C 121, 21865–21876 (2017). https://doi.org/10.1021/acs.jpcc.7b05416
Article
CAS
Google Scholar
Julien, C.M., Mauger, A., Zaghib, K., et al.: Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132–154 (2014). https://doi.org/10.3390/inorganics2020132
Article
CAS
Google Scholar
Ahmed, S., Nelson, P.A., Gallagher, K.G., et al.: Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. J. Power Sources 342, 733–740 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.069
Article
CAS
Google Scholar
Wentker, M., Greenwood, M., Leker, J.: A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials. Energies 12, 504 (2019). https://doi.org/10.3390/en12030504
Article
CAS
Google Scholar
Zheng, J.M., Yan, P.F., Zhang, J.D., et al.: Suppressed oxygen extraction and degradation of LiNix MnyCozO2 cathodes at high charge cut-off voltages. Nano Res. 10, 4221–4231 (2017). https://doi.org/10.1007/s12274-017-1761-6
Article
CAS
Google Scholar
Xia, Y., Zheng, J.M., Wang, C.M., et al.: Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49, 434–452 (2018). https://doi.org/10.1016/j.nanoen.2018.04.062
Article
CAS
Google Scholar
Li, J., Downie, L.E., Ma, L., et al.: Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode material for lithium ion batteries. J. Electrochem. Soc. 162, A1401–A1408 (2015). https://doi.org/10.1149/2.1011507jes
Article
CAS
Google Scholar
Zhang, N., Li, J., Li, H.Y., et al.: Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem. Mater. 30, 8852–8860 (2018). https://doi.org/10.1021/acs.chemmater.8b03827
Article
CAS
Google Scholar
Li, J., Liu, H.S., Xia, J., et al.: The impact of electrolyte additives and upper cut-off voltage on the formation of a rocksalt surface layer in LiNi0.8Mn0.1Co0.1O2 electrodes. J. Electrochem. Soc. 164, A655–A665 (2017). https://doi.org/10.1149/2.0651704jes
Article
CAS
Google Scholar
Hwang, S., Kim, S.M., Bak, S.M., et al.: Investigating the reversibility of structural modifications of LixNiyMnzCo1−y−zO2 cathode materials during initial charge/discharge, at multiple length scales. Chem. Mater. 27, 6044–6052 (2015). https://doi.org/10.1021/acs.chemmater.5b02457
Article
CAS
Google Scholar
Ma, L., Young, S., Ellis, L.D., et al.: Impact of a titanium-based surface coating applied to Li[Ni0.5Mn0.3Co0.2]O2 on lithium-ion cell performance. ACS Appl. Energy Mater. 1, 7052–7064 (2018). https://doi.org/10.1021/acsaem.8b01472
Article
CAS
Google Scholar
Arumugam, R.S., Ma, L., Li, J., et al.: Special synergy between electrolyte additives and positive electrode surface coating to enhance the performance of Li[Ni0.6Mn0.2Co0.2]O2/graphite cells. J. Electrochem. Soc. 163, A2531–A2538 (2016). https://doi.org/10.1149/2.0171613jes
Article
CAS
Google Scholar
Schipper, F., Erickson, E.M., Erk, C., et al.: Review: recent advances and remaining challenges for lithium ion battery cathodes. J. Electrochem. Soc. 164, A6220–A6228 (2017). https://doi.org/10.1149/2.0351701jes
Article
CAS
Google Scholar
Manthiram, A.: An outlook on lithium ion battery technology. ACS Cent. Sci. 3, 1063–1069 (2017). https://doi.org/10.1021/acscentsci.7b00288
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen, Z.H., Qin, Y., Amine, K., et al.: Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 20, 7606 (2010). https://doi.org/10.1039/c0jm00154f
Article
CAS
Google Scholar
Xia, J., Nie, M.Y., Ma, L., et al.: Variation of coulombic efficiency versus upper cutoff potential of Li-ion cells tested with aggressive protocols. J. Power Sources 306, 233–240 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.013
Article
CAS
Google Scholar
Abarbanel, D.W., Nelson, K.J., Dahn, J.R.: Exploring impedance growth in high voltage NMC/graphite Li-ion cells using a transmission line model. J. Electrochem. Soc. 163, A522–A529 (2016). https://doi.org/10.1149/2.0901603jes
Article
CAS
Google Scholar
Barré, A., Deguilhem, B., Grolleau, S., et al.: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680–689 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.040
Article
CAS
Google Scholar
Dong, T., Peng, P., Jiang, F.M.: Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations. Int. J. Heat Mass Transf. 117, 261–272 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.024
Article
CAS
Google Scholar
Li, J., Shunmugasundaram, R., Doig, R., et al.: In situ X-ray diffraction study of layered Li–Ni–Mn–Co oxides: effect of particle size and structural stability of core–shell materials. Chem. Mater. 28, 162–171 (2016). https://doi.org/10.1021/acs.chemmater.5b03500
Article
CAS
Google Scholar
Gabrisch, H., Yi, T.H., Yazami, R.: Transmission electron microscope studies of LiNi1/3Mn1/3Co1/3O2 before and after long-term aging at 70°C. Electrochem. Solid State Lett. 11, A119 (2008). https://doi.org/10.1149/1.2919713
Article
CAS
Google Scholar
Weber, R., Fell, C.R., Dahn, J.R., et al.: Operando X-ray diffraction study of polycrystalline and single-crystal LixNi0.5Mn0.3Co0.2O2. J. Electrochem. Soc. 164, A2992–A2999 (2017). https://doi.org/10.1149/2.0441713jes
Article
CAS
Google Scholar
Strehle, B., Kleiner, K., Jung, R., et al.: The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 164, A400–A406 (2017). https://doi.org/10.1149/2.1001702jes
Article
CAS
Google Scholar
Jung, R., Metzger, M., Maglia, F., et al.: Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 8, 4820–4825 (2017). https://doi.org/10.1021/acs.jpclett.7b01927
Article
PubMed
CAS
Google Scholar
Jung, R., Metzger, M., Maglia, F., et al.: Oxygen release and its effect on the cycling stability of LiNixMnyCozO2(NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361–A1377 (2017). https://doi.org/10.1149/2.0021707jes
Article
CAS
Google Scholar
Buchberger, I., Seidlmayer, S., Pokharel, A., et al.: Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J. Electrochem. Soc. 162, A2737–A2746 (2015). https://doi.org/10.1149/2.0721514jes
Article
CAS
Google Scholar
Lim, J.M., Hwang, T., Kim, D., et al.: Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci. Rep. 7, 39669 (2017). https://doi.org/10.1038/srep39669
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu, W., Oh, P., Liu, X.E., et al.: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015). https://doi.org/10.1002/anie.201409262
Article
CAS
Google Scholar
Myung, S.T., Maglia, F., Park, K.J., et al.: Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196–223 (2017). https://doi.org/10.1021/acsenergylett.6b00594
Article
CAS
Google Scholar
Hou, P.Y., Yin, J.M., Ding, M., et al.: Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives. Small 13, 1701802 (2017). https://doi.org/10.1002/smll.201701802
Article
CAS
Google Scholar
Vetter, J., Novak, P., Wagner, M.R., et al.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147, 269–281 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.006
Article
CAS
Google Scholar
Ochida, M., Domi, Y., Doi, T., et al.: Influence of manganese dissolution on the degradation of surface films on edge plane graphite negative-electrodes in lithium-ion batteries. J. Electrochem. Soc. 159, A961–A966 (2012). https://doi.org/10.1149/2.031207jes
Article
CAS
Google Scholar
Jiang, L.H., Wang, Q.S., Sun, J.H.: Electrochemical performance and thermal stability analysis of LiNiCoMnO2 cathode based on a composite safety electrolyte. J. Hazard. Mater. 351, 260–269 (2018). https://doi.org/10.1016/j.jhazmat.2018.03.015
Article
PubMed
CAS
Google Scholar
Nelson, K.J., Abarbanel, D.W., Xia, J., et al.: Effects of upper cutoff potential on LaPO4-coated and uncoated Li[Ni0.42Mn0.42Co0.16]O2/graphite pouch cells. J. Electrochem. Soc. 163, A272–A280 (2016). https://doi.org/10.1149/2.0691602jes
Article
CAS
Google Scholar
Jung, R., Morasch, R., Karayaylali, P., et al.: Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J. Electrochem. Soc. 165, A132–A141 (2018). https://doi.org/10.1149/2.0401802jes
Article
CAS
Google Scholar
Hall, D.S., Nie, M.Y., Ellis, L.D., et al.: Surface-electrolyte interphase formation in lithium-ion cells containing pyridine adduct additives. J. Electrochem. Soc. 163, A773–A780 (2016). https://doi.org/10.1149/2.1091605jes
Article
CAS
Google Scholar
Ellis, L.D., Allen, J.P., Hill, I.G., et al.: High-precision coulometry studies of the impact of temperature and time on SEI formation in Li-ion cells. J. Electrochem. Soc. 165, A1529–A1536 (2018)
Article
CAS
Google Scholar
Solchenbach, S., Hong, G., Freiberg, A.T.S., et al.: Electrolyte and SEI decomposition reactions of transition metal ions investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 165, A3304–A3312 (2018). https://doi.org/10.1149/2.0511814jes
Article
CAS
Google Scholar
Wang, A.P., Kadam, S., Li, H., et al.: Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput. Mater. 4, 15 (2018). https://doi.org/10.1038/s41524-018-0064-0
Article
CAS
Google Scholar
Wang, S.Y., Yan, M.Y., Li, Y., et al.: Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. J. Power Sources 393, 75–82 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.005
Article
CAS
Google Scholar
Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
Article
CAS
Google Scholar
Bak, S.M., Hu, E.Y., Zhou, Y.N., et al.: Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594–22601 (2014). https://doi.org/10.1021/am506712c
Article
PubMed
CAS
Google Scholar
Ghanty, C., Markovsky, B., Erickson, E.M., et al.: Li+-ion extraction/insertion of Ni-rich Li1+x(NiyCozMnz)wO2 (0.005 < x < 0.03; y∶z = 8∶1, w ≈ 1) electrodes: in situ XRD and Raman spectroscopy study. ChemElectroChem 2, 1479–1486 (2015). https://doi.org/10.1002/celc.201500398
Article
CAS
Google Scholar
Wang, X.L., An, K., Cai, L., et al.: Visualizing the chemistry and structure dynamics in lithium-ion batteries by in situ neutron diffraction. Sci. Rep. 2, 747 (2012)
Article
CAS
Google Scholar
Yang, J., Xia, Y.Y.: Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl. Mater. Interfaces 8, 1297–1308 (2016). https://doi.org/10.1021/acsami.5b09938
Article
PubMed
CAS
Google Scholar
Laubach, S., Laubach, S., Schmidt, P., et al.: Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys. Chem. Chem. Phys. 11, 3278–3289 (2009)
Article
CAS
Google Scholar
Yabuuchi, N., Makimura, Y., Ohzuku, T.: Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Electrochem. Soc. 154, A314–A321 (2007). https://doi.org/10.1149/1.2455585
Article
CAS
Google Scholar
Cui, S., Wei, Y., Liu, T., et al.: Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery. Adv. Energy Mater. 6, 1501309 (2016)
Article
CAS
Google Scholar
Markus, I.M., Lin, F., Kam, K.C., et al.: Computational and experimental investigation of Ti substitution in Li1(NixMnxCo1–2x–yTiy)O2 for lithium ion batteries. J. Phys. Chem. Lett. 5, 3649–3655 (2014). https://doi.org/10.1021/jz5017526
Article
PubMed
CAS
Google Scholar
Yang, J., Hou, M.Y., Haller, S., et al.: Improving the cycling performance of the layered Ni-rich oxide cathode by introducing low-content Li2MnO3. Electrochim. Acta 189, 101–110 (2016). https://doi.org/10.1016/j.electacta.2015.12.080
Article
CAS
Google Scholar
Chebiam, R.V., Prado, F., Manthiram, A.: Structural instability of delithiated Li1–xNi1–yCoyO2 cathodes. J. Electrochem. Soc. 148, A49 (2001). https://doi.org/10.1149/1.1339029
Article
CAS
Google Scholar
Hua, W.B., Zhang, J.B., Zheng, Z., et al.: Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Trans. 43, 14824–14832 (2014). https://doi.org/10.1039/c4dt01611d
Article
PubMed
CAS
Google Scholar
Chen, M.M., Zhao, E.Y., Chen, D.F., et al.: Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping. Inorg. Chem. 56, 8355–8362 (2017). https://doi.org/10.1021/acs.inorgchem.7b01035
Article
PubMed
CAS
Google Scholar
Ding, Y., Mu, D.B., Wu, B.R., et al.: Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl. Energy 195, 586–599 (2017). https://doi.org/10.1016/j.apenergy.2017.03.074
Article
CAS
Google Scholar
Huang, R., Ikuhara, Y.: STEM characterization for lithium-ion battery cathode materials. Curr. Opin. Solid State Mater. Sci. 16, 31–38 (2012). https://doi.org/10.1016/j.cossms.2011.08.002
Article
CAS
Google Scholar
Jung, S.K., Gwon, H., Hong, J., et al.: Understanding the degradation mechanisms of LiNi0.5Co0.2 Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 4, 1300787 (2014). https://doi.org/10.1002/aenm.201300787
Article
CAS
Google Scholar
Robert, R., Villevieille, C., Novák, P.: Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. J. Mater. Chem. A 2, 8589–8598 (2014)
Article
CAS
Google Scholar
Gabrisch, H., Yazami, R.: Electron diffraction studies of LiNi1/3Mn1/3Co1/3O2 after charge–discharge cycling. Electrochem. Solid State Lett. 13, A88–A90 (2010)
Article
CAS
Google Scholar
Ravdel, B., Abraham, K.M., Gitzendanner, R., et al.: Thermal stability of lithium-ion battery electrolytes. J. Power Sources 119–121, 805–810 (2003). https://doi.org/10.1016/s0378-7753(03)00257-x
Article
Google Scholar
Konishi, H., Yoshikawa, M., Hirano, T.: The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1−xCo0.1MoxO2 (x = 0, 0.02, 0.04). J. Power Sources 244, 23–28 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.004
Article
CAS
Google Scholar
Xiong, X.H., Wang, Z.X., Yue, P., et al.: Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources 222, 318–325 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.029
Article
CAS
Google Scholar
Wang, D., Li, X.H., Wang, Z.X., et al.: Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material. J. Alloys Compd. 647, 612–619 (2015). https://doi.org/10.1016/j.jallcom.2015.06.071
Article
CAS
Google Scholar
Lin, F., Markus, I.M., Nordlund, D., et al.: Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
Article
PubMed
CAS
Google Scholar
Ruan, Y.L., Song, X.Y., Fu, Y.B., et al.: Structural evolution and capacity degradation mechanism of LiNi0.6Mn0.2Co0.2O2 cathode materials. J. Power Sources 400, 539–548 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.056
Article
CAS
Google Scholar
Xu, J., Lin, F., Doeff, M.M., et al.: A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 5, 874–901 (2017). https://doi.org/10.1039/c6ta07991a
Article
CAS
Google Scholar
Hwang, S., Chang, W., Kim, S.M., et al.: Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem. Mater. 26, 1084–1092 (2014). https://doi.org/10.1021/cm403332s
Article
CAS
Google Scholar
Yang, J., Xia, Y.Y.: Enhancement on the cycling stability of the layered Ni-rich oxide cathode by in situ fabricating nano-thickness cation-mixing layers. J. Electrochem. Soc. 163, A2665–A2672 (2016). https://doi.org/10.1149/2.0841613jes
Article
CAS
Google Scholar
Ryu, H.H., Park, K.J., Yoon, C.S., et al.: Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (\(0.6 \leqslant x \leqslant 0.95\)) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018). https://doi.org/10.1021/acs.chemmater.7b05269
Article
CAS
Google Scholar
Zheng, S.Y., Hong, C.Y., Guan, X.Y., et al.: Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. J. Power Sources 412, 336–343 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.053
Article
CAS
Google Scholar
Fu, C.C., Li, G.S., Luo, D., et al.: Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. ACS Appl. Mater. Interfaces 6, 15822–15831 (2014). https://doi.org/10.1021/am5030726
Article
PubMed
CAS
Google Scholar
Chebiam, R.V., Kannan, A.M., Prado, F., et al.: Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem. Commun. 3, 624–627 (2001). https://doi.org/10.1016/s1388-2481(01)00232-6
Article
CAS
Google Scholar
Chen, Z.Q., Wang, J., Huang, J.X., et al.: The high-temperature and high-humidity storage behaviors and electrochemical degradation mechanism of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. J. Power Sources 363, 168–176 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.087
Article
CAS
Google Scholar
Shkrob, I.A., Gilbert, J.A., Phillips, P.J., et al.: Chemical weathering of layered Ni-rich oxide electrode materials: evidence for cation exchange. J. Electrochem. Soc. 164, A1489–A1498 (2017). https://doi.org/10.1149/2.0861707jes
Article
CAS
Google Scholar
Zheng, H.H., Sun, Q.N., Liu, G., et al.: Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells. J. Power Sources 207, 134–140 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.122
Article
CAS
Google Scholar
Gallus, D.R., Schmitz, R., Wagner, R., et al.: The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochim. Acta 134, 393–398 (2014). https://doi.org/10.1016/j.electacta.2014.04.091
Article
CAS
Google Scholar
Wandt, J., Freiberg, A., Thomas, R., et al.: Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. J. Mater. Chem. A 4, 18300–18305 (2016). https://doi.org/10.1039/c6ta08865a
Article
CAS
Google Scholar
Xiao, X.C., Liu, Z.Y., Baggetto, L., et al.: Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. Phys. Chem. Chem. Phys. 16, 10398 (2014). https://doi.org/10.1039/c4cp00833b
Article
PubMed
CAS
Google Scholar
Joshi, T., Eom, K., Yushin, G., et al.: Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. J. Electrochem. Soc. 161, A1915–A1921 (2014). https://doi.org/10.1149/2.0861412jes
Article
CAS
Google Scholar
Zhan, C., Lu, J., Jeremy Kropf, A., et al.: Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems. Nat. Commun. 4, 2437 (2013)
Article
CAS
Google Scholar
Xia, Y.Y.: An investigation of lithium ion insertion into spinel structure Li–Mn–O compounds. J. Electrochem. Soc. 143, 825–833 (1996). https://doi.org/10.1149/1.1836544
Article
CAS
Google Scholar
Jiao, F., Bao, J.L., Hill, A., et al.: Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 9711–9716 (2008). https://doi.org/10.1002/anie.200803431
Article
CAS
Google Scholar
Venkatraman, S., Shin, Y., Manthiram, A.: Phase relationships and structural and chemical stabilities of charged Li1–xCoO2–δ and Li1–xNi0.85Co0.15O2–δ cathodes. Electrochem. Solid State Lett. 6, A9–A12 (2003). https://doi.org/10.1149/1.1525430
Article
CAS
Google Scholar
Andersson, A.M., Abraham, D.P., Haasch, R., et al.: Surface characterization of electrodes from high power lithium-ion batteries. J. Electrochem. Soc. 149, A1358–A1369 (2002). https://doi.org/10.1149/1.1505636
Article
CAS
Google Scholar
Berkes, B.B., Schiele, A., Sommer, H., et al.: On the gassing behavior of lithium-ion batteries with NCM523 cathodes. J. Solid State Electrochem. 20, 2961–2967 (2016). https://doi.org/10.1007/s10008-016-3362-9
Article
CAS
Google Scholar
Xiong, D.J., Ellis, L.D., Li, J., et al.: Measuring oxygen release from delithiated LiNixMnyCo1−x−yO2 and its effects on the performance of high voltage Li-ion cells. J. Electrochem. Soc. 164, A3025–A3037 (2017)
Article
CAS
Google Scholar
Wandt, J., Freiberg, A.T.S., Ogrodnik, A., et al.: Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21, 825–833 (2018). https://doi.org/10.1016/j.mattod.2018.03.037
Article
CAS
Google Scholar
Metzger, M., Strehle, B., Solchenbach, S., et al.: Origin of H2 Evolution in LIBs: H2O reduction vs. electrolyte oxidation. J. Electrochem. Soc. 163, A798–A809 (2016). https://doi.org/10.1149/2.1151605jes
Article
CAS
Google Scholar
Jung, R., Strobl, P., Maglia, F., et al.: Temperature dependence of oxygen release from LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode materials for Li-ion batteries. J. Electrochem. Soc. 165, A2869–A2879 (2018)
Article
CAS
Google Scholar
Hatsukade, T., Schiele, A., Hartmann, P., et al.: Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes. ACS Appl. Mater. Interfaces 10, 38892–38899 (2018)
Article
CAS
Google Scholar
Streich, D., Erk, C., Guéguen, A., et al.: Operando monitoring of early Ni-mediated surface reconstruction in layered lithiated Ni–Co–Mn oxides. J. Phys. Chem. C 121, 13481–13486 (2017). https://doi.org/10.1021/acs.jpcc.7b02303
Article
CAS
Google Scholar
Xiong, D.J., Hynes, T., Ellis, L.D., et al.: Effects of surface coating on gas evolution and impedance growth at LiNixMnyCo1−x−yO2 Positive electrodes in Li-ion cells. J. Electrochem. Soc. 164, A3174–A3181 (2017). https://doi.org/10.1149/2.0991713jes
Article
CAS
Google Scholar
Lin, F., Nordlund, D., Li, Y.Y., et al.: Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries. Nat. Energy 1, 15004 (2016). https://doi.org/10.1038/nenergy.2015.4
Article
CAS
Google Scholar
Choi, J., Manthiram, A.: Investigation of the irreversible capacity loss in the layered LiNi1/3Mn1/3Co1/3O2 cathodes. Electrochem. Solid State Lett. 8, C102–C105 (2005). https://doi.org/10.1149/1.1943567
Article
CAS
Google Scholar
Kang, S.H., Abraham, D.P., Yoon, W.S., et al.: First-cycle irreversibility of layered Li–Ni–Co–Mn oxide cathode in Li-ion batteries. Electrochim. Acta 54, 684–689 (2008). https://doi.org/10.1016/j.electacta.2008.07.007
Article
CAS
Google Scholar
Burns, J.C., Kassam, A., Sinha, N.N., et al.: Predicting and extending the lifetime of Li-ion batteries. J. Electrochem. Soc. 160, A1451–A1456 (2013)
Article
CAS
Google Scholar
Meng, K., Wang, Z.X., Guo, H.J., et al.: Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3. Electrochim. Acta 211, 822–831 (2016). https://doi.org/10.1016/j.electacta.2016.06.110
Article
CAS
Google Scholar
Yan, P., Zheng, J., Liu, J., et al.: Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018)
Article
CAS
Google Scholar
Dahn, H.M., Smith, A.J., Burns, J.C., et al.: User-friendly differential voltage analysis freeware for the analysis of degradation mechanisms in Li-ion batteries. J. Electrochem. Soc. 159, A1405–A1409 (2012)
Article
CAS
Google Scholar
Chen, Y., Zhang, Y., Chen, B., et al.: An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J. Power Sources 256, 20–27 (2014)
Article
CAS
Google Scholar
Cho, W., Kim, S.M., Song, J.H., et al.: Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J. Power Sources 282, 45–50 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.128
Article
CAS
Google Scholar
Shi, Y., Zhang, M.H., Qian, D.N., et al.: Ultrathin Al2O3 coatings for improved cycling performance and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode material. Electrochim. Acta 203, 154–161 (2016). https://doi.org/10.1016/j.electacta.2016.03.185
Article
CAS
Google Scholar
Habte, B.T., Jiang, F.M.: Effect of microstructure morphology on Li-ion battery graphite anode performance: electrochemical impedance spectroscopy modeling and analysis. Solid State Ion. 314, 81–91 (2018). https://doi.org/10.1016/j.ssi.2017.11.024
Article
CAS
Google Scholar
Schweidler, S., de Biasi, L., Schiele, A., et al.: Volume changes of graphite anodes revisited: a combined Operando X-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C 122, 8829–8835 (2018)
Article
CAS
Google Scholar
Leng, Y., Ge, S., Marple, D., et al.: Electrochemical cycle-life characterization of high energy lithium-ion cells with thick Li(Ni0.6Mn0.2Co0.2)O2 and graphite electrodes. J. Electrochem. Soc. 164, A1037–A1049 (2017)
Article
CAS
Google Scholar
Hasan, M.F., Chen, C.F., Shaffer, C.E., et al.: Analysis of the implications of rapid charging on lithium-ion battery performance. J. Electrochem. Soc. 162, A1382–A1395 (2015)
Article
CAS
Google Scholar
Wandt, J., Jakes, P., Granwehr, J., et al.: Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries. Mater. Today 21, 231–240 (2018)
Article
CAS
Google Scholar
Liu, Q.Q., Ma, L., Du, C.Y., et al.: Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells. Electrochim. Acta 263, 237–248 (2018)
Article
CAS
Google Scholar
Ushirogata, K., Sodeyama, K., Futera, Z., et al.: Near-shore aggregation mechanism of electrolyte decomposition products to explain solid electrolyte interphase formation. J. Electrochem. Soc. 162, A2670–A2678 (2015)
Article
CAS
Google Scholar
Nie, M.Y., Lucht, B.L.: Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J. Electrochem. Soc. 161, A1001–A1006 (2014). https://doi.org/10.1149/2.054406jes
Article
CAS
Google Scholar
Vissers, D.R., Chen, Z.H., Shao, Y.Y., et al.: Role of manganese deposition on graphite in the capacity fading of lithium ion batteries. ACS Appl. Mater. Interfaces 8, 14244–14251 (2016). https://doi.org/10.1021/acsami.6b02061
Article
PubMed
CAS
Google Scholar
Esbenshade, J.L., Gewirth, A.A.: Effect of Mn and Cu addition on lithiation and SEI formation on model anode electrodes. J. Electrochem. Soc. 161, A513–A518 (2014). https://doi.org/10.1149/2.009404jes
Article
CAS
Google Scholar
Wang, R.H., Li, X.H., Wang, Z.X., et al.: Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34, 131–140 (2017). https://doi.org/10.1016/j.nanoen.2017.02.037
Article
CAS
Google Scholar
Kim, J., Lee, J.G., Kim, H.S., et al.: Thermal degradation of solid electrolyte interphase (SEI) layers by phosphorus pentafluoride (PF5) attack. J. Electrochem. Soc. 164, A2418–A2425 (2017)
Article
CAS
Google Scholar
Bernhard, R., Metzger, M., Gasteiger, H.A.: Gas evolution at graphite anodes depending on electrolyte water content and SEI quality studied by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 162, A1984–A1989 (2015). https://doi.org/10.1149/2.0191510jes
Article
CAS
Google Scholar
Stevens, D.A., Ying, R.Y., Fathi, R., et al.: Using high precision coulometry measurements to compare the degradation mechanisms of NMC/LMO and NMC-only automotive scale pouch cells. J. Electrochem. Soc. 161, A1364–A1370 (2014). https://doi.org/10.1149/2.0971409jes
Article
CAS
Google Scholar
Smith, A.J., Burns, J.C., Zhao, X.M., et al.: Publisher’s note: a high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 158, S23 (2011). [J. Electrochem. Soc., 158, A447 (2011)]
Article
CAS
Google Scholar
Gilbert, J.A., Bareño, J., Spila, T., et al.: Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: diagnostic studies of full cells and harvested electrodes. J. Electrochem. Soc. 164, A6054–A6065 (2017). https://doi.org/10.1149/2.0081701jes
Article
CAS
Google Scholar
Wu, S.H., Lee, P.H.: Storage fading of a commercial 18650 cell comprised with NMC/LMO cathode and graphite anode. J. Power Sources 349, 27–36 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.002
Article
CAS
Google Scholar
Kato, H., Kobayashi, Y., Miyashiro, H.: Differential voltage curve analysis of a lithium-ion battery during discharge. J. Power Sources 398, 49–54 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.043
Article
CAS
Google Scholar
Pop, V., Bergveld, H.J., Op het Veld, J.H.G., et al.: Modeling battery behavior for accurate state-of-charge indication. J. Electrochem. Soc. 153, A2013–A2022 (2006). https://doi.org/10.1149/1.2335951
Article
CAS
Google Scholar
Li, D.J., Li, H., Danilov, D., et al.: Temperature-dependent cycling performance and ageing mechanisms of C6/LiNi1/3Mn1/3Co1/3O2 batteries. J. Power Sources 396, 444–452 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.035
Article
CAS
Google Scholar
Aryal, S., Timofeeva, E.V., Segre, C.U.: Structural studies of capacity activation and reduced voltage fading in Li-rich, Mn–Ni–Fe composite oxide cathode. J. Electrochem. Soc. 165, A71–A78 (2018). https://doi.org/10.1149/2.0031802jes
Article
CAS
Google Scholar
Liang, L.W., Hu, G.R., Jiang, F., et al.: Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J. Alloys Compd. 657, 570–581 (2016). https://doi.org/10.1016/j.jallcom.2015.10.177
Article
CAS
Google Scholar
Song, B.H., Li, W.D., Yan, P.F., et al.: A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries. J. Power Sources 325, 620–629 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.056
Article
CAS
Google Scholar
Liu, W., Oh, P., Liu, X.E., et al.: Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv. Energy Mater. 5, 1500274 (2015). https://doi.org/10.1002/aenm.201500274
Article
CAS
Google Scholar
Sun, Y.K., Myung, S.T., Park, B.C., et al.: High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009). https://doi.org/10.1038/nmat2418
Article
PubMed
CAS
Google Scholar
Noh, H.J., Chen, Z.H., Yoon, C.S., et al.: Cathode material with nanorod structure: an application for advanced high-energy and safe lithium batteries. Chem. Mater. 25, 2109–2115 (2013). https://doi.org/10.1021/cm4006772
Article
CAS
Google Scholar
Morales-Ugarte, J.E., Bolimowska, E., Rouault, H., et al.: EIS and XPS investigation on SEI layer formation during first discharge on graphite electrode with a vinylene carbonate doped imidazolium based ionic liquid electrolyte. J. Phys. Chem. C 122, 18223–18230 (2018)
Article
CAS
Google Scholar
Kim, H., Kim, M.G., Jeong, H.Y., et al.: A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett. 15, 2111–2119 (2015). https://doi.org/10.1021/acs.nanolett.5b00045
Article
PubMed
CAS
Google Scholar
Su, Y.T., Cui, S.H., Zhuo, Z.Q., et al.: Enhancing the high-voltage cycling performance of LiNi0.5Mn0.3Co0.2O2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al2O3. ACS Appl. Mater. Interfaces 7, 25105–25112 (2015). https://doi.org/10.1021/acsami.5b05500
Article
PubMed
CAS
Google Scholar
El Mofid, W., Ivanov, S., Konkin, A., et al.: A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution. J. Power Sources 268, 414–422 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.048
Article
CAS
Google Scholar
Evertz, M., Kasnatscheew, J., Winter, M., et al.: Investigation of various layered lithium ion battery cathode materials by plasma- and X-ray-based element analytical techniques. Anal. Bioanal. Chem. 411, 277–285 (2019). https://doi.org/10.1007/s00216-018-1441-8
Article
PubMed
CAS
Google Scholar
Ran, Q.W., Zhao, H.Y., Wang, Q., et al.: Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature. Electrochim. Acta 299, 971–978 (2019). https://doi.org/10.1016/j.electacta.2019.01.082
Article
CAS
Google Scholar
Hu, K.H., Qi, X.Y., Lu, C.F., et al.: Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials via Li4P2O7 surface modification for Li-ion batteries. Ceram. Int. 44, 14209–14216 (2018). https://doi.org/10.1016/j.ceramint.2018.05.024
Article
CAS
Google Scholar
Han, E.S., Du, X.J., Yang, P.J., et al.: The effects of copper and titanium co-substitution on LiNi0.6Co0.15Mn0.25O2 for lithium ion batteries. Ionics 24, 393–401 (2018). https://doi.org/10.1007/s11581-017-2226-3
Article
CAS
Google Scholar
Laszczynski, N., Solchenbach, S., Gasteiger, H.A., et al.: Understanding electrolyte decomposition of graphite/NCM811 cells at elevated operating voltage. J. Electrochem. Soc. 166, A1853–A1859 (2019). https://doi.org/10.1149/2.0571910jes
Article
CAS
Google Scholar
Thompson, L.M., Stone, W., Eldesoky, A., et al.: Quantifying changes to the electrolyte and negative electrode in aged NMC532/graphite lithium-ion cells. J. Electrochem. Soc. 165, A2732–A2740 (2018). https://doi.org/10.1149/2.0721811jes
Article
CAS
Google Scholar
Xiong, X.H., Ding, D., Wang, Z.X., et al.: Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole. J. Solid State Electrochem. 18, 2619–2624 (2014). https://doi.org/10.1007/s10008-014-2519-7
Article
CAS
Google Scholar
Nie, M.Y., Demeaux, J., Young, B.T., et al.: Effect of vinylene carbonate and fluoroethylene carbonate on SEI formation on graphitic anodes in Li-ion batteries. J. Electrochem. Soc. 162, A7008–A7014 (2015). https://doi.org/10.1149/2.0021513jes
Article
CAS
Google Scholar
Noh, H.J., Ju, J.W., Sun, Y.K.: Comparison of nanorod-structured Li[Ni0.54Co0.16Mn0.30]O2 with conventional cathode materials for Li-ion batteries. ChemSusChem 7, 245–252 (2014). https://doi.org/10.1002/cssc.201300379
Article
PubMed
CAS
Google Scholar
Jan, S.S., Nurgul, S., Shi, X.Q., et al.: Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. Electrochim. Acta 149, 86–93 (2014). https://doi.org/10.1016/j.electacta.2014.10.093
Article
CAS
Google Scholar
Ma, L., Xia, J., Dahn, J.R.: Ternary electrolyte additive mixtures for Li-ion cells that promote long lifetime and less reactivity with charged electrodes at elevated temperatures. J. Electrochem. Soc. 162, A1170–A1174 (2015). https://doi.org/10.1149/2.0181507jes
Article
CAS
Google Scholar
Chen, L.C., Yang, Y.M., Wang, Z.S., et al.: Enhanced electrochemical performances and thermal stability of LiNi1/3Co1/3Mn1/3O2 by surface modification with YF3. J. Alloys Compd. 711, 462–472 (2017). https://doi.org/10.1016/j.jallcom.2017.03.130
Article
CAS
Google Scholar
Cho, Y., Lee, S., Lee, Y., et al.: Spinel-layered core-shell cathode materials for Li-ion batteries. Adv. Energy Mater. 1, 821–828 (2011). https://doi.org/10.1002/aenm.201100239
Article
CAS
Google Scholar
Dolotko, O., Senyshyn, A., Mühlbauer, M.J., et al.: Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction. J. Power Sources 255, 197–203 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.010
Article
CAS
Google Scholar
Wang, S., Chen, S., Gao, W., Liu, L., Zhang, S.: A new additive 3-isocyanatopropyltriethoxysilane to improve electrochemical performance of Li/NCM622 half-cell at high voltage. J. Power Sources 423, 90–97 (2019)
Article
CAS
Google Scholar
Zhu, C.Y., Liu, J., Yu, X., et al.: 4-bromoanisole (4BA) as additive for overcharge protection of lithium-ion batteries. Int. J. Electrochem. Sci. 14, 4571–4579 (2019). https://doi.org/10.20964/2019.05.17
Article
CAS
Google Scholar
Cao, Z.Y., Hashinokuchi, M., Doi, T., et al.: Improved cycle performance of LiNi0.8Co0.1Mn0.1O2 positive electrode material in highly concentrated LiBF4/DMC. J. Electrochem. Soc. 166, A82–A88 (2019). https://doi.org/10.1149/2.0291902jes
Article
CAS
Google Scholar
Wang, C.Y., Yu, L., Fan, W.Z., et al.: Enhanced high-voltage cyclability of LiNi0.5Co0.2Mn0.3O2− based pouch cells via lithium difluorophosphate introducing as electrolyte additive. J. Alloys Compd. 755, 1–9 (2018). https://doi.org/10.1016/j.jallcom.2018.05.005
Article
CAS
Google Scholar
Liu, L.L., Wang, S.L., Zhang, Z.Y., et al.: Fluoroethylene carbonate as an electrolyte additive for improving interfacial stability of high-voltage LiNi0.6Co0.2Mn0.2O2 cathode. Ionics 25, 1035–1043 (2019). https://doi.org/10.1007/s11581-018-2641-0
Article
CAS
Google Scholar
Wang, L.N., Liu, S.Q., Zhao, K.M., et al.: Improving the rate performance and stability of LiNi0.6Co0.2Mn0.2O2 in high voltage lithium-ion battery by using fluoroethylene carbonate as electrolyte additive. Ionics 24, 3337–3346 (2018). https://doi.org/10.1007/s11581-018-2534-2
Article
CAS
Google Scholar
Zhang, S.S., Fan, X.L., Wang, C.S.: Enhanced electrochemical performance of Ni-rich layered cathode materials by using LiPF6 as a cathode additive. ChemElectroChem 6, 1536–1541 (2019). https://doi.org/10.1002/celc.201801858
Article
CAS
Google Scholar
Eilers-Rethwisch, M., Winter, M., Schappacher, F.M.: Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2−xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials. J. Power Sources 387, 101–107 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.080
Article
CAS
Google Scholar
Du, Q.X., Tang, Z.F., Ma, X.H., et al.: Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen. Solid State Ion. 279, 11–17 (2015). https://doi.org/10.1016/j.ssi.2015.07.006
Article
CAS
Google Scholar
Wu, Y.P., Rahm, E., Holze, R.: Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochim. Acta 47, 3491–3507 (2002). https://doi.org/10.1016/s0013-4686(02)00317-1
Article
CAS
Google Scholar
Hildebrand, S., Friesen, A., Haetge, J., et al.: Delayed thermal runaway investigation on commercial 2.6 Ah NCM-LCO based 18650 lithium ion cells with accelerating rate calorimetry. ECS Trans. 74, 85–94 (2016). https://doi.org/10.1149/07401.0085ecst
Article
CAS
Google Scholar
Wang, D., Li, X.H., Wang, Z.X., et al.: Co-modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with zirconium substitution and surface polypyrrole coating: towards superior high voltage electrochemical performances for lithium ion batteries. Electrochim. Acta 196, 101–109 (2016). https://doi.org/10.1016/j.electacta.2016.02.156
Article
CAS
Google Scholar
Kang, K., Ceder, G.: Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006)
Article
CAS
Google Scholar
Li, G.Y., Zhang, Z.J., Wang, R.N., et al.: Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode. Electrochim. Acta 212, 399–407 (2016). https://doi.org/10.1016/j.electacta.2016.07.033
Article
CAS
Google Scholar
Du, H., Zheng, Y.Y., Dou, Z.J., et al.: Zn-doped LiNi1/3Co1/3Mn1/3O2 Composite as cathode material for lithium ion battery: preparation, characterization, and electrochemical properties. J. Nanomater. 2015, 1–5 (2015). https://doi.org/10.1155/2015/867618
Article
CAS
Google Scholar
Li, L.J., Li, X.H., Wang, Z.X., et al.: Synthesis, structural and electrochemical properties of LiNi0.79Co0.1Mn0.1Cr0.01O2 via fast co-precipitation. J. Alloys Compd. 507, 172–177 (2010). https://doi.org/10.1016/j.jallcom.2010.07.148
Article
CAS
Google Scholar
Schipper, F., Dixit, M., Kovacheva, D., et al.: Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A 4, 16073–16084 (2016). https://doi.org/10.1039/c6ta06740a
Article
CAS
Google Scholar
Huang, Z.J., Wang, Z.X., Zheng, X.B., et al.: Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim. Acta 182, 795–802 (2015). https://doi.org/10.1016/j.electacta.2015.09.151
Article
CAS
Google Scholar
Huang, Z.J., Wang, Z.X., Jing, Q., et al.: Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochim. Acta 192, 120–126 (2016). https://doi.org/10.1016/j.electacta.2016.01.139
Article
CAS
Google Scholar
Zhao, R.R., Yang, Z.L., Liang, J.X., et al.: Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2. J. Alloys Compd. 689, 318–325 (2016). https://doi.org/10.1016/j.jallcom.2016.07.230
Article
CAS
Google Scholar
Kang, K., Meng, Y.S., Breger, J., et al.: Electrodes with high power and high capacity for rechargeable lithium batteries. ChemInform (2006). https://doi.org/10.1002/chin.200620021
Article
Google Scholar
Cho, Y., Oh, P., Cho, J.: A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. Nano Lett. 13, 1145–1152 (2013). https://doi.org/10.1021/nl304558t
Article
PubMed
CAS
Google Scholar
Yue, P., Wang, Z.X., Guo, H.J., et al.: A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2–zFz cathode materials. Electrochim. Acta 92, 1–8 (2013). https://doi.org/10.1016/j.electacta.2013.01.018
Article
CAS
Google Scholar
Shin, H.S., Park, S.H., Yoon, C.S., et al.: Effect of fluorine on the electrochemical properties of layered Li[Ni0.43Co0.22Mn0.35]O2 cathode materials via a carbonate process. Electrochem. Solid State Lett. 8, A559–A563 (2005). https://doi.org/10.1149/1.2039954
Article
CAS
Google Scholar
Kim, G.H., Kim, M.H., Myung, S.T., et al.: Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2−zFz as lithium intercalation material. J. Power Sources 146, 602–605 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.045
Article
CAS
Google Scholar
Li, G.Y., Huang, Z.L., Zuo, Z.C., et al.: Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Co1/3Mn1/3O2 cathode. J. Power Sources 281, 69–76 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.173
Article
CAS
Google Scholar
Zhu, H.L., Li, Q.F., Gong, X.L., et al.: Enhanced high voltage performance of chlorine/bromine Co-doped lithium nickel manganese cobalt oxide. Crystals 8, 425 (2018). https://doi.org/10.3390/cryst8110425
Article
CAS
Google Scholar
Park, K.J., Lim, B.B., Choi, M.H., et al.: A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. J. Mater. Chem. A 3, 22183–22190 (2015). https://doi.org/10.1039/c5ta05657h
Article
CAS
Google Scholar
Sun, Y.K., Chen, Z.H., Noh, H.J., et al.: Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012). https://doi.org/10.1038/nmat3435
Article
PubMed
CAS
Google Scholar
Hou, P.Y., Zhang, L.Q., Gao, X.P.: A high-energy, full concentration-gradient cathode material with excellent cycle and thermal stability for lithium ion batteries. J. Mater. Chem. A 2, 17130–17138 (2014). https://doi.org/10.1039/c4ta03158j
Article
CAS
Google Scholar
Song, D.W., Hou, P.Y., Wang, X.Q., et al.: Understanding the origin of enhanced performances in core–shell and concentration-gradient layered oxide cathode materials. ACS Appl. Mater. Interfaces 7, 12864–12872 (2015). https://doi.org/10.1021/acsami.5b02373
Article
PubMed
CAS
Google Scholar
Li, Y., Xu, R., Ren, Y., et al.: Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction. Nano Energy 19, 522–531 (2016). https://doi.org/10.1016/j.nanoen.2015.07.019
Article
CAS
Google Scholar
Noh, H.J., Myung, S.T., Lee, Y.J., et al.: High-energy layered oxide cathodes with thin shells for improved surface stability. Chem. Mater. 26, 5973–5979 (2014). https://doi.org/10.1021/cm502774u
Article
CAS
Google Scholar
Lim, B.B., Yoon, S.J., Park, K.J., et al.: Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries. Adv. Funct. Mater. 25, 4673–4680 (2015). https://doi.org/10.1002/adfm.201501430
Article
CAS
Google Scholar
Oh, P., Oh, S.M., Li, W.D., et al.: High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. Adv. Sci. 3, 1600184 (2016). https://doi.org/10.1002/advs.201600184
Article
CAS
Google Scholar
Shi, H., Wang, X.Q., Hou, P.Y., et al.: Core–shell structured Li[(Ni0.8Co0.1Mn0.1)0.7(Ni0.45Co0.1Mn0.45)0.3]O2 cathode material for high-energy lithium ion batteries. J. Alloys Compd. 587, 710–716 (2014). https://doi.org/10.1016/j.jallcom.2013.10.226
Article
CAS
Google Scholar
Oh, P., Song, B.H., Li, W.D., et al.: Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn1.9Al0.1O4. J. Mater. Chem. A 4, 5839–5841 (2016). https://doi.org/10.1039/c6ta01061j
Article
CAS
Google Scholar
Wang, Z.Y., Huang, S.S., Chen, B.J., et al.: Infiltrative coating of LiNi0.5Co0.2Mn0.3O2 microspheres with layer-structured LiTiO2: towards superior cycling performances for Li-ion batteries. J. Mater. Chem. A 2, 19983–19987 (2014). https://doi.org/10.1039/c4ta04196h
Article
CAS
Google Scholar
Song, B.H., Li, W.D., Oh, S.M., et al.: Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 9718–9725 (2017). https://doi.org/10.1021/acsami.7b00070
Article
PubMed
CAS
Google Scholar
Wang, L., Mu, D.B., Wu, B.R., et al.: Enhanced electrochemical performance of lithium metasilicate-coated LiNi0.6Co0.2Mn0.2O2 Ni-rich cathode for Li-ion batteries at high cutoff voltage. Electrochim. Acta 222, 806–813 (2016). https://doi.org/10.1016/j.electacta.2016.11.041
Article
CAS
Google Scholar
Wu, Z.Z., Ji, S.P., Liu, T.C., et al.: Aligned Li+ tunnels in core–shell Li(NixMnyCoz)O2@LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode. Nano Lett. 16, 6357–6363 (2016). https://doi.org/10.1021/acs.nanolett.6b02742
Article
PubMed
CAS
Google Scholar
Park, K., Park, J.H., Choi, B., et al.: Metal phosphate-coated Ni-rich layered oxide positive electrode materials for Li-ion batteries: improved electrochemical performance and decreased Li residuals content. Electrochim. Acta 257, 217–223 (2017). https://doi.org/10.1016/j.electacta.2017.10.101
Article
CAS
Google Scholar
Chen, Y.P., Zhang, Y., Wang, F., et al.: Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating. J. Alloys Compd. 611, 135–141 (2014). https://doi.org/10.1016/j.jallcom.2014.05.068
Article
CAS
Google Scholar
Xiong, X.H., Wang, Z.X., Guo, H.J., et al.: Enhanced electrochemical properties of lithium-reactive V2O5coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60°C. J. Mater. Chem. A 1, 1284–1288 (2013). https://doi.org/10.1039/c2ta00678b
Article
CAS
Google Scholar
Shi, S.J., Tu, J.P., Mai, Y.J., et al.: Structure and electrochemical performance of CaF2 coated LiMn1/3Ni1/3Co1/3O2 cathode material for Li-ion batteries. Electrochim. Acta 83, 105–112 (2012). https://doi.org/10.1016/j.electacta.2012.08.029
Article
CAS
Google Scholar
Chen, S., He, T., Su, Y.F., et al.: Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 29732–29743 (2017). https://doi.org/10.1021/acsami.7b08006
Article
PubMed
CAS
Google Scholar
Bai, Y.S., Wang, X.Y., Yang, S.Y., et al.: The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2. J. Alloys Compd. 541, 125–131 (2012). https://doi.org/10.1016/j.jallcom.2012.06.101
Article
CAS
Google Scholar
Woo, S.G., Han, J.H., Kim, K.J., et al.: Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries. Electrochim. Acta 153, 115–121 (2015). https://doi.org/10.1016/j.electacta.2014.12.001
Article
CAS
Google Scholar
Chen, Z.H., Dahn, J.R.: Studies of LiCoO2 coated with metal oxides. Electrochem. Solid State Lett. 6, A221–A224 (2003). https://doi.org/10.1149/1.1611731
Article
CAS
Google Scholar
Jo, C.H., Cho, D.H., Noh, H.J., et al.: An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 8, 1464–1479 (2015). https://doi.org/10.1007/s12274-014-0631-8
Article
CAS
Google Scholar
Liu, S.J., Wu, H., Huang, L., et al.: Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J. Alloys Compd. 674, 447–454 (2016). https://doi.org/10.1016/j.jallcom.2016.03.060
Article
CAS
Google Scholar
Li, L.J., Xu, M., Yao, Q., et al.: Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Appl. Mater. Interfaces 8, 30879–30889 (2016). https://doi.org/10.1021/acsami.6b09197
Article
PubMed
CAS
Google Scholar
Neudeck, S., Walther, F., Bergfeldt, T., et al.: Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells. ACS Appl. Mater. Interfaces 10, 20487–20498 (2018). https://doi.org/10.1021/acsami.8b04405
Article
PubMed
CAS
Google Scholar
Kong, J.Z., Wang, S.S., Tai, G.A., et al.: Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating. J. Alloys Compd. 657, 593–600 (2016). https://doi.org/10.1016/j.jallcom.2015.10.187
Article
CAS
Google Scholar
Luo, W.B., Zheng, B.L., He, J.: Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material after surface modification with graphene oxide. J. Alloys Compd. 705, 405–412 (2017). https://doi.org/10.1016/j.jallcom.2017.02.114
Article
CAS
Google Scholar
Du, Z.J., Li, J.L., Wood, M., et al.: Three-dimensional conductive network formed by carbon nanotubes in aqueous processed NMC electrode. Electrochim. Acta 270, 54–61 (2018). https://doi.org/10.1016/j.electacta.2018.03.063
Article
CAS
Google Scholar
Wu, Z.Z., Han, X.G., Zheng, J.X., et al.: Depolarized and fully active cathode based on Li(Ni0.5Co0.2Mn0.3)O2 embedded in carbon nanotube network for advanced batteries. Nano Lett. 14, 4700–4706 (2014). https://doi.org/10.1021/nl5018139
Article
PubMed
CAS
Google Scholar
Kang, J., Pham, H.Q., Kang, D.H., et al.: Improved rate capability of highly loaded carbon fiber-interwoven LiNi0.6Co0.2Mn0.2O2 cathode material for high-power Li-ion batteries. J. Alloys Compd. 657, 464–471 (2016). https://doi.org/10.1016/j.jallcom.2015.10.127
Article
CAS
Google Scholar
Zou, Y.H., Yang, X.F., Lv, C., et al.: Multishelled Ni-rich Li(NixCoyMnz)O2 Hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 4, 1600262 (2017). https://doi.org/10.1002/advs.201600262
Article
CAS
Google Scholar
Zheng, X.B., Li, X.H., Zhang, B., et al.: Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method. Ceram. Int. 42, 644–649 (2016). https://doi.org/10.1016/j.ceramint.2015.08.159
Article
CAS
Google Scholar
Ahn, W., Lim, S.N., Jung, K.N., et al.: Combustion-synthesized LiNi0.6Mn0.2Co0.2O2 as cathode material for lithium ion batteries. J. Alloys Compd. 609, 143–149 (2014). https://doi.org/10.1016/j.jallcom.2014.03.123
Article
CAS
Google Scholar
Tian, J., Su, Y.F., Wu, F., et al.: High-rate and cycling-stable nickel-rich cathode materials with enhanced Li+ diffusion pathway. ACS Appl. Mater. Interfaces 8, 582–587 (2016). https://doi.org/10.1021/acsami.5b09641
Article
PubMed
CAS
Google Scholar
Li, H.Y., Li, J., Ma, X.W., et al.: Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries. J. Electrochem. Soc. 165, A1038–A1045 (2018). https://doi.org/10.1149/2.0951805jes
Article
CAS
Google Scholar
Zheng, Z., Guo, X.D., Chou, S.L., et al.: Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 porous microspheres: facile designed synthesis and their improved electrochemical performance. Electrochim. Acta 191, 401–410 (2016). https://doi.org/10.1016/j.electacta.2016.01.092
Article
CAS
Google Scholar
Mohanty, D., Dahlberg, K., King, D.M., et al.: Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries. Sci. Rep. 6, 26532 (2016). https://doi.org/10.1038/srep26532
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim, U.H., Lee, E.J., Yoon, C.S., et al.: Compositionally graded cathode material with long-term cycling stability for electric vehicles application. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700254
Article
Google Scholar
Wang, J.P., Du, C.Y., Yan, C.Q., et al.: Al2O3 coated concentration-gradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material by freeze drying for long-life lithium ion batteries. Electrochim. Acta 174, 1185–1191 (2015). https://doi.org/10.1016/j.electacta.2015.06.112
Article
CAS
Google Scholar
Wang, J.P., Du, C.Y., Xu, X., et al.: Lithium phosphorus oxynitride coated concentration gradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material with enhanced electrochemical properties. Electrochim. Acta 192, 340–345 (2016). https://doi.org/10.1016/j.electacta.2016.01.176
Article
CAS
Google Scholar
Liu, Y., Xie, K., Pan, Y., et al.: LiPON as a protective layer on graphite anode to extend the storage life of Li-ion battery at elevated temperature. Ionics 24, 723–734 (2018). https://doi.org/10.1007/s11581-017-2250-3
Article
CAS
Google Scholar
Long, B.R., Rinaldo, S.G., Gallagher, K.G., et al.: Enabling high-energy, high-voltage lithium-ion cells: standardization of coin-cell assembly, electrochemical testing, and evaluation of full cells. J. Electrochem. Soc. 163, A2999–A3009 (2016). https://doi.org/10.1149/2.0691614jes
Article
CAS
Google Scholar
An, S.J., Li, J.L., Mohanty, D., et al.: Correlation of electrolyte volume and electrochemical performance in lithium-ion pouch cells with graphite anodes and NMC532 cathodes. J. Electrochem. Soc. 164, A1195–A1202 (2017). https://doi.org/10.1149/2.1131706jes
Article
CAS
Google Scholar
Smart, M.C., Ratnakumar, B.V.: Effects of electrolyte composition on lithium plating in lithium-ion cells. J. Electrochem. Soc. 158, A379 (2011). https://doi.org/10.1149/1.3544439
Article
CAS
Google Scholar
Genieser, R., Ferrari, S., Loveridge, M., et al.: Lithium ion batteries (NMC/graphite) cycling at 80 °C: different electrolytes and related degradation mechanism. J. Power Sources 373, 172–183 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.014
Article
CAS
Google Scholar
Son, H.B., Jeong, M.Y., Han, J.G., et al.: Effect of reductive cyclic carbonate additives and linear carbonate co-solvents on fast chargeability of LiNi0.6Co0.2Mn0.2O2/graphite cells. J. Power Sources 400, 147–156 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.022
Article
CAS
Google Scholar
Liu, D.Q., Qian, K., He, Y.B., et al.: Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/graphite pouch cell. Electrochim. Acta 269, 378–387 (2018). https://doi.org/10.1016/j.electacta.2018.02.151
Article
CAS
Google Scholar
Wang, K., Xing, L.D., Zhi, H.Z., et al.: High stability graphite/electrolyte interface created by a novel electrolyte additive: a theoretical and experimental study. Electrochim. Acta 262, 226–232 (2018). https://doi.org/10.1016/j.electacta.2018.01.018
Article
CAS
Google Scholar
Petibon, R., Rotermund, L.M., Dahn, J.R.: Evaluation of phenyl carbonates as electrolyte additives in lithium-ion batteries. J. Power Sources 287, 184–195 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.012
Article
CAS
Google Scholar
Shi, P.C., Lin, M., Zheng, H., et al.: Effect of propylene carbonate-Li+ solvation structures on graphite exfoliation and its application in Li-ion batteries. Electrochim. Acta 247, 12–18 (2017). https://doi.org/10.1016/j.electacta.2017.06.174
Article
CAS
Google Scholar
Jurng, S., Brown, Z.L., Kim, J., et al.: Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11, 2600–2608 (2018). https://doi.org/10.1039/c8ee00364e
Article
CAS
Google Scholar
Farhat, D., Maibach, J., Eriksson, H., et al.: Towards high-voltage Li-ion batteries: reversible cycling of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes. Electrochim. Acta 281, 299–311 (2018). https://doi.org/10.1016/j.electacta.2018.05.133
Article
CAS
Google Scholar
Rodrigues, M.T.F., Sayed, F.N., Gullapalli, H., et al.: High-temperature solid electrolyte interphases (SEI) in graphite electrodes. J. Power Sources 381, 107–115 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.070
Article
CAS
Google Scholar