Skip to main content

Advertisement

Log in

Application of Gasotransmitters in Nanomaterials-Based Food Packaging

  • Review Paper
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

Packaging films help to prevent damage, by providing an extended shelf life. From the post-harvest period to final delivery to the consumer is the most crucial time span for maintaining the shelf life of many fruits and vegetables. The gasotransmitters play a vital role in the delayed ripening and senescence of many fruits and vegetables, during the post-harvest period. Apart from their application in maintaining the shelf life of fruits and vegetables, these gaseous signaling molecules are also used for different therapeutic applications. Handling, storage, and transport of these gas molecules are the main problems when to be directly used in an open environment. To avoid these issues, porous organic/inorganic scaffolds are generally used to immobilize them. Recently nanostructures act as an encapsulation system and carrier of these molecules. This system not only avoids the burst release and toxicity that is associated with the burst release but also helps to release them in a controllable manner at a required site under induced stimuli. These nanocarriers on forming a composite with packaging materials provide several new properties to the packaging film. In this paper, the interaction of gasotransmitters with different nanostructures, their controlled release from nanostructures, and further use for advanced packaging film are reviewed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xue L et al (2017) Missing food, missing data? A critical review of global food losses and food waste data. Environ Sci Technol 51(12):6618–6633. https://doi.org/10.1021/acs.est.7b00401

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Joardder MUH, Masud MH (2019) Food preservation in developing countries: challenges and solutions. Food Preserv Dev Ctries Chall Solut. https://doi.org/10.1007/978-3-030-11530-2

    Article  Google Scholar 

  3. Sheldon RA, Norton M (2020) Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chem 22(19):6310–6322. https://doi.org/10.1039/d0gc02630a

    Article  CAS  Google Scholar 

  4. Chaudhary P, Fatima F, Kumar A (2020) Relevance of nanomaterials in food packaging and its advanced future prospects. J Inorg Organomet Polym Mater 30(12):5180–5192. https://doi.org/10.1007/s10904-020-01674-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tiwari K, Singh R, Negi P, Dani R, Rawat A (2021) Application of nanomaterials in food packaging industry: a review. Mater Today Proc 46:10652–10655. https://doi.org/10.1016/j.matpr.2021.01.385

    Article  CAS  Google Scholar 

  6. Kuswandi B (2017) Environmental friendly food nano-packaging. Environ Chem Lett 15(2):205–221. https://doi.org/10.1007/s10311-017-0613-7

    Article  CAS  Google Scholar 

  7. Youssef AM, El-Sayed SM (2018) Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydr Polym 193:19–27. https://doi.org/10.1016/j.carbpol.2018.03.088

    Article  CAS  PubMed  Google Scholar 

  8. Gong T, Li C, Bian B, Wu Y, Dawuda MM, Liao W (2018) Advances in application of small molecule compounds for extending the shelf life of perishable horticultural products: a review. Sci Hortic (Amsterdam) 230(2017):25–34. https://doi.org/10.1016/j.scienta.2017.11.013

    Article  CAS  Google Scholar 

  9. Jin Z, Sun L, Yang G, Pei Y (2018) Hydrogen sulfide regulates energy production to delay leaf senescence induced by drought stress in arabidopsis. Front Plant Sci 871:1–11. https://doi.org/10.3389/fpls.2018.01722

    Article  Google Scholar 

  10. Dugbartey GJ, Juriasingani S, Zhang MY, Sener A (2021) H2S donor molecules against cold ischemia-reperfusion injury in preclinical models of solid organ transplantation. Pharmacol Res 172:105842. https://doi.org/10.1016/j.phrs.2021.105842

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Xie X, Ke B, Huang W, Jiang X, He G (2021) Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res. https://doi.org/10.1016/j.jare.2021.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu T, Mukosera GT, Blood AB (2020) The role of gasotransmitters in neonatal physiology. Nitric Oxide Biol Chem 95:29–44. https://doi.org/10.1016/j.niox.2019.12.002

    Article  CAS  Google Scholar 

  13. Garren MR, Ashcraft M, Qian Y, Douglass M, Brisbois EJ, Handa H (2021) Nitric oxide and viral infection: Recent developments in antiviral therapies and platforms. Appl Mater Today 22:100887. https://doi.org/10.1016/j.apmt.2020.100887

    Article  Google Scholar 

  14. Pant J, Mondal A, Manuel J, Singha P, Mancha J, Handa H (2020) H2S-releasing composite: a gasotransmitter platform for potential biomedical applications. ACS Biomater Sci Eng 6(4):2062–2071. https://doi.org/10.1021/acsbiomaterials.0c00146

    Article  CAS  PubMed  Google Scholar 

  15. Pieretti JC, Junho CVC, Carneiro-Ramos MS, Seabra AB (2020) H2S- and NO-releasing gasotransmitter platform: a crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res 161:105121. https://doi.org/10.1016/j.phrs.2020.105121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corpas FJ, Palma JM (2020) H2S signaling in plants and applications in agriculture. J Adv Res 24:131–137. https://doi.org/10.1016/j.jare.2020.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yao GF et al (2020) Hydrogen sulfide maintained the good appearance and nutrition in post-harvest tomato fruits by antagonizing the effect of ethylene. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00584

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ziogas V, Molassiotis A, Fotopoulos V, Tanou G (2018) Hydrogen sulfide: a potent tool in postharvest fruit biology and possible mechanism of action. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01375

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li D, Limwachiranon J, Li L, Du R, Luo Z (2016) Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chem 208:272–278. https://doi.org/10.1016/j.foodchem.2016.03.113

    Article  CAS  PubMed  Google Scholar 

  20. Aghdam MS, Mahmoudi R, Razavi F, Rabiei V, Soleimani A (2018) Hydrogen sulfide treatment confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation. Sci Hortic (Amsterdam) 238:264–271. https://doi.org/10.1016/j.scienta.2018.04.063

    Article  CAS  Google Scholar 

  21. Niazi Z, Razavi F, Khademi O, Soleimani M (2021) Scientia Horticulturae Exogenous application of hydrogen sulfide and γ-aminobutyric acid alleviates chilling injury and preserves quality of persimmon fruit (Diospyros kaki, cv. Karaj) during cold storage. Sci Hortic (Amsterdam) 285:110198. https://doi.org/10.1016/j.scienta.2021.110198

    Article  CAS  Google Scholar 

  22. Zhu L et al (2019) Scientia horticulturae synergistic effect of nitric oxide with hydrogen sulfide on inhibition of ripening and softening of peach fruits during storage. Sci Hortic (Amsterdam) 256:108591. https://doi.org/10.1016/j.scienta.2019.108591

    Article  CAS  Google Scholar 

  23. Siddiqui MW, Deshi V, Homa F, Aftab MA, Aftab T (2021) Inhibitory effects of hydrogen sulfide on oxidative damage and pericarp browning in harvested litchi. J Plant Growth Regul 40(6):2560–2569. https://doi.org/10.1007/s00344-021-10300-x

    Article  CAS  Google Scholar 

  24. Al Ubeed HMS, Wills RBH, Bowyer MC, Vuong QV, Golding JB (2017) Interaction of exogenous hydrogen sulphide and ethylene on senescence of green leafy vegetables. Postharvest Biol Technol 133:81–87. https://doi.org/10.1016/j.postharvbio.2017.07.010

    Article  CAS  Google Scholar 

  25. Li D et al (2017) Effects of hydrogen sulfide on yellowing and energy metabolism in broccoli. Postharvest Biol Technol 129:136–142. https://doi.org/10.1016/j.postharvbio.2017.03.017

    Article  CAS  Google Scholar 

  26. Corpas FJ, González-Gordo S, Palma JM (2020) Nitric oxide: a radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 324:211–219. https://doi.org/10.1016/j.jbiotec.2020.10.020

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Cao J, Fan X, Jiang W (2020) Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends Food Sci Technol 99:531–541. https://doi.org/10.1016/j.tifs.2020.03.024

    Article  CAS  Google Scholar 

  28. Gergoff Grozeff GE, Alegre ML, Senn ME, Chaves AR, Simontacchi M, Bartoli CG (2017) Combination of nitric oxide and 1-MCP on postharvest life of the blueberry (Vaccinium spp.) fruit. Postharvest Biol Technol 133:72–80. https://doi.org/10.1016/j.postharvbio.2017.06.012

    Article  CAS  Google Scholar 

  29. Zhou Y, Li S, Zeng K (2016) Exogenous nitric oxide-induced postharvest disease resistance in citrus fruit to Colletotrichum gloeosporioides. J Sci Food Agric 96(2):505–512. https://doi.org/10.1002/jsfa.7117

    Article  CAS  PubMed  Google Scholar 

  30. Khaliq G, Ullah M, Ahmed S, Arif M, Muhammad A (2020) Exogenous nitric oxide reduces postharvest anthracnose disease and maintains quality of custard apple (Annona squamosa L.) fruit during ripening. J Food Meas Charact. https://doi.org/10.1007/s11694-020-00658-z

    Article  Google Scholar 

  31. Hu M, Zhu Y, Liu G, Gao Z, Li M, Su Z (2019) Scientia horticulturae inhibition on anthracnose and induction of defense response by nitric oxide in pitaya fruit. Sci Hortic (Amsterdam) 245(2018):224–230. https://doi.org/10.1016/j.scienta.2018.10.030

    Article  CAS  Google Scholar 

  32. Yan B et al (2019) Scientia horticulturae nitric oxide enhances resistance against black spot disease in muskmelon and the possible mechanisms involved. Sci Hortic (Amsterdam) 256:108650. https://doi.org/10.1016/j.scienta.2019.108650

    Article  CAS  Google Scholar 

  33. Li G, Yu Z, Cao J, Peng Y, Shi J (2020) Scientia horticulturae nitric oxide regulates multiple defense signaling pathways in peach fruit response to Monilinia fructicola invasion. Sci Hortic (Amsterdam) 264(2019):109163. https://doi.org/10.1016/j.scienta.2019.109163

    Article  CAS  Google Scholar 

  34. Zhu L, Yang R, Sun Y, Zhang F, Du H, Zhang W (2020) Nitric oxide maintains postharvest quality of navel orange fruit by reducing postharvest rotting during cold storage and enhancing antioxidant activity. Physiol Mol Plant Pathol. https://doi.org/10.1016/j.pmpp.2020.101589

    Article  Google Scholar 

  35. Ren Y, He J, Liu H, Liu G, Ren X (2017) Nitric oxide alleviates deterioration and preserves antioxidant properties in ‘Tainong’ mango fruit during ripening. Hortic Environ Biotechnol 58(1):27–37. https://doi.org/10.1007/s13580-017-0001-z

    Article  CAS  Google Scholar 

  36. Zheng X, Hu B, Song L, Pan J, Liu M (2017) Scientia horticulturae changes in quality and defense resistance of kiwifruit in response to nitric oxide treatment during storage at room temperature. Sci Hortic (Amsterdam) 222:187–192. https://doi.org/10.1016/j.scienta.2017.05.010

    Article  CAS  Google Scholar 

  37. Yang R et al (2021) Scientia horticulturae transcriptome profiling of postharvest kiwifruit in response to exogenous nitric oxide. Sci. Hortic. (Amsterdam) 277(2020):109788. https://doi.org/10.1016/j.scienta.2020.109788

    Article  CAS  Google Scholar 

  38. Tian W, Huang D, Geng B, Zhang Q, Feng J, Zhu S (2020) Regulation of the biosynthesis of endogenous nitric oxide and abscisic acid in stored peaches by exogenous nitric oxide and abscisic acid. J Sci Food Agric 100(5):2136–2144. https://doi.org/10.1002/jsfa.10237

    Article  CAS  PubMed  Google Scholar 

  39. Buet A, Steelheart C, Perini MA, Galatro A, Simontacchi M, Gergoff Grozeff GE (2021) Nitric oxide as a key gasotransmitter in fruit postharvest: an overview. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10428-w

    Article  Google Scholar 

  40. Huang D, Tian W, Feng J, Zhu S (2020) Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit. Plant Physiol Biochem 151:60–68. https://doi.org/10.1016/j.plaphy.2020.03.012

    Article  CAS  PubMed  Google Scholar 

  41. Cai H, Han S, Yu M, Ma R, Yu Z (2020) Exogenous nitric oxide fumigation promoted the emission of volatile organic compounds in peach fruit during shelf life after long-term cold storage. Food Res Int 133(2019):109135. https://doi.org/10.1016/j.foodres.2020.109135

    Article  CAS  PubMed  Google Scholar 

  42. Song C, Zhao Y, Li A, Qi S, Lin Q, Duan Y (2021) Plant physiology and biochemistry postharvest nitric oxide treatment induced the alternative oxidase pathway to enhance antioxidant capacity and chilling tolerance in peach fruit. Plant Physiol Biochem 167:113–122. https://doi.org/10.1016/j.plaphy.2021.07.036

    Article  CAS  PubMed  Google Scholar 

  43. Palma F, Carvajal F, Castro-cegrí A, Pulido A, Jamilena M, Jim R (2021) Postharvest biology and technology pre-storage nitric oxide treatment enhances chilling tolerance of zucchini fruit (Cucurbita pepo L.) by S-nitrosylation of proteins and modulation of the antioxidant response. Postharvest Biol Technol. https://doi.org/10.1016/j.postharvbio.2020.111345

    Article  Google Scholar 

  44. Ma Y, Huang D, Chen C, Zhu S, Gao J (2019) Scientia horticulturae regulation of ascorbate-glutathione cycle in peaches via nitric oxide treatment during cold storage. Sci Hortic (Amsterdam) 247(2018):400–406. https://doi.org/10.1016/j.scienta.2018.12.039

    Article  CAS  Google Scholar 

  45. Zhao Y, Zhu X, Hou Y, Wang X, Li X (2019) Effects of nitric oxide fumigation treatment on retarding cell wall degradation and delaying softening of winter jujube (Ziziphus jujuba Mill. Cv. Dongzao) fruit during storage. Postharvest Biol Technol 156:110954. https://doi.org/10.1016/j.postharvbio.2019.110954

    Article  CAS  Google Scholar 

  46. Gheysarbigi S, Hossein S, Ghasemnezhad M (2020) The inhibitory effect of nitric oxide on enzymatic browning reactions of in-package fresh pistachios (Pistacia vera L.). Postharvest Biol Technol 159(2019):110998. https://doi.org/10.1016/j.postharvbio.2019.110998

    Article  Google Scholar 

  47. Jayarajan S, Sharma RR (2018) “Impact of nitric oxide on shelf life and quality of nectarine (Prunus persica var. nucipersica). Acta Physiol Plant. https://doi.org/10.1007/s11738-018-2779-4

    Article  Google Scholar 

  48. Shi K, Liu Z, Wang J, Zhu S, Huang D (2019) Scientia horticulturae nitric oxide modulates sugar metabolism and maintains the quality of red raspberry during storage. Sci Hortic (Amsterdam) 256:108611. https://doi.org/10.1016/j.scienta.2019.108611

    Article  CAS  Google Scholar 

  49. Huang L, Wu G, Zhang S, Kuang F, Chen F (2019) Postharvest biology and technology the identification and functional verification of the cinnamate 4-hydroxylase gene from wax apple fruit and its role in lignin biosynthesis during nitric oxide-delayed postharvest cottony softening. Postharvest Biol Technol 158:110964. https://doi.org/10.1016/j.postharvbio.2019.110964

    Article  CAS  Google Scholar 

  50. Soleimani M, Kakavand F, Rabiei V, Zaare-nahandi F (2019) Scientia horticulturae γ-aminobutyric acid and nitric oxide treatments preserve sensory and nutritional quality of cornelian cherry fruits during postharvest cold storage by delaying softening and enhancing phenols accumulation. Sci Hortic (Amsterdam) 246(2018):812–817. https://doi.org/10.1016/j.scienta.2018.11.064

    Article  CAS  Google Scholar 

  51. Wasim M, Fozia S, Deep H, Shamsher LM, Surabhi A (2020) Exogenous nitric oxide delays ripening and maintains postharvest quality of pointed gourd during storage. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10270-6

    Article  Google Scholar 

  52. Sun M, Yang X, Zhu Z, Xu Q, Wu K, Kang Y (2021) Plant physiology and biochemistry comparative transcriptome analysis provides insight into nitric oxide suppressing lignin accumulation of postharvest okra (Abelmoschus esculentus L.) during cold storage. Plant Physiol Biochem 167:49–67. https://doi.org/10.1016/j.plaphy.2021.07.029

    Article  CAS  PubMed  Google Scholar 

  53. Wei F, Fu M, Li J, Yang X, Chen Q, Tian S (2019) Chlorine dioxide delays the reddening of postharvest green peppers by affecting the chlorophyll degradation and carotenoid synthesis pathways. Postharvest Biol Technol 156(2018):110939. https://doi.org/10.1016/j.postharvbio.2019.110939

    Article  CAS  Google Scholar 

  54. Yang X, Zhang X, Fu M, Chen Q, Muzammil JM (2018) Chlorine dioxide fumigation generated by a solid releasing agent enhanced the efficiency of 1-MCP treatment on the storage quality of strawberry. J Food Sci Technol 55(6):2003–2010. https://doi.org/10.1007/s13197-018-3114-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang X, Yan R, Chen Q, Fu M (2020) Analysis of flavor and taste attributes differences treated by chemical preservatives: a case study in strawberry fruits treated by 1-methylcyclopropene and chlorine dioxide. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04474-7

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun X et al (2017) Effect of controlled-release chlorine dioxide on the quality and safety of cherry/grape tomatoes. Food Control 82:26–30. https://doi.org/10.1016/j.foodcont.2017.06.021

    Article  CAS  Google Scholar 

  57. Wei J, Chen Y, Tiemur A, Wang J, Wu B (2018) Postharvest biology and technology degradation of pesticide residues by gaseous chlorine dioxide on table grapes. Postharvest Biol Technol 137(2017):142–148. https://doi.org/10.1016/j.postharvbio.2017.12.001

    Article  CAS  Google Scholar 

  58. Liu X, Jiao W, Du Y, Chen Q, Su Z, Fu M (2020) Chlorine dioxide controls green mold caused by Penicillium digitatum in citrus fruits and the mechanism involved. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.0c05288

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang S, Wang Q, Guo Y, Kang L, Yu Y (2020) Carbon monoxide enhances the resistance of jujube fruit against postharvest Alternaria rot. Postharvest Biol Technol 168:111268. https://doi.org/10.1016/j.postharvbio.2020.111268

    Article  CAS  Google Scholar 

  60. Hu H, Zhao S, Li P, Shen W (2018) Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis. Postharvest Biol Technol 135:123–130. https://doi.org/10.1016/j.postharvbio.2017.09.008

    Article  CAS  Google Scholar 

  61. Zhang Y et al (2019) Nitrite accumulation during storage of tomato fruit as prevented by hydrogen gas. Int J Food Prop 22(01):1425–1438. https://doi.org/10.1080/10942912.2019.1651737

    Article  CAS  Google Scholar 

  62. Chang E, Lee J, Kim J (2017) Scientia horticulturae cell wall degrading enzymes activity is altered by high carbon dioxide treatment in postharvest ‘Mihong’ peach fruit. Sci Hortic (Amsterdam) 225:399–407. https://doi.org/10.1016/j.scienta.2017.07.038

    Article  CAS  Google Scholar 

  63. Admane N et al (2018) Effect of ozone or carbon dioxide pre-treatment during long-term storage of organic table grapes with modified atmosphere packaging. LWT Food Sci Technol 98:170–178. https://doi.org/10.1016/j.lwt.2018.08.041

    Article  CAS  Google Scholar 

  64. Ahn D, Kim I, Lim J, Hee J, Park K, Lee J (2021) The effect of high CO2 treatment on targeted metabolites of ‘Seolhyang’ strawberry (Fragaria × ananassa) fruits during cold storage. LWT Food Sci Technol 143:111156. https://doi.org/10.1016/j.lwt.2021.111156

    Article  CAS  Google Scholar 

  65. Li D et al (2020) Delaying the biosynthesis of aromatic secondary metabolites in postharvest strawberry fruit exposed to elevated CO2 atmosphere. Food Chem 306:1–8. https://doi.org/10.1016/j.foodchem.2019.125611

    Article  CAS  Google Scholar 

  66. Li D, Zhang X, Li L, Soleimani M, Wei X, Liu J (2019) Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit. Food Chem 285:163–170. https://doi.org/10.1016/j.foodchem.2019.01.150

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Li W, Chang H, Zhou J, Luo Y, Zhang K (2019) Sweet cherry fruit miRNAs and effect of high-CO2 on the profile associated with ripening. Planta. https://doi.org/10.1007/s00425-019-03110-9

    Article  PubMed  Google Scholar 

  68. Rodríguez-Ruiz M, Zuccarelli R, Palma JM, Corpas FJ, Freschi L (2019) Biotechnological application of nitric oxide and hydrogen peroxide in plants

  69. Nazir F, Fariduddin Q, Alam T (2020) Chemosphere hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252:126486. https://doi.org/10.1016/j.chemosphere.2020.126486

    Article  CAS  PubMed  Google Scholar 

  70. Carné-Sánchez A, Carmona FJ, Kim C, Furukawa S (2020) Porous materials as carriers of gasotransmitters towards gas biology and therapeutic applications. Chem Commun 56(68):9750–9766. https://doi.org/10.1039/d0cc03740k

    Article  CAS  Google Scholar 

  71. Chen M, Chen X, Yam K (2020) Encapsulation complex of chlorine dioxide in α-cyclodextrin: Structure characterization and release property. Food Control. https://doi.org/10.1016/j.foodcont.2019.106783

    Article  Google Scholar 

  72. Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M (2021) A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. Mater Sci Eng C 124:112053. https://doi.org/10.1016/j.msec.2021.112053

    Article  CAS  Google Scholar 

  73. Kuai L, Liu F, Sen Chiou B, Avena-Bustillos RJ, McHugh TH, Zhong F (2021) Controlled release of antioxidants from active food packaging: a review. Food Hydrocoll 120:106992. https://doi.org/10.1016/j.foodhyd.2021.106992

    Article  CAS  Google Scholar 

  74. Sun X, Wang Y, Wen S, Huang K et al (2021) Novel controlled and targeted releasing hydrogen sulfide system exerts combinational cerebral and myocardial protection after cardiac arrest. J Nanobiotechnol. https://doi.org/10.1186/s12951-021-00784-w

    Article  Google Scholar 

  75. Huang Y et al (2020) Near-infrared photothermal release of hydrogen sulfide from nanocomposite hydrogels for anti-inflammation applications. Chin Chem Lett 31(3):787–791. https://doi.org/10.1016/j.cclet.2019.05.025

    Article  CAS  Google Scholar 

  76. Hsu PH et al (2020) Hydrogen sulfide-responsive self-assembled nanogel. ACS Appl Polym Mater 2(9):3756–3760. https://doi.org/10.1021/acsapm.0c00759

    Article  CAS  Google Scholar 

  77. Pelegrino MT, Weller RB, Chen X, Bernardes JS, Seabra AB (2017) Chitosan nanoparticles for nitric oxide delivery in human skin. Medchemcomm 8(4):713–719. https://doi.org/10.1039/c6md00502k

    Article  CAS  PubMed  Google Scholar 

  78. Niu X et al (2019) A glutathione responsive nitric oxide release system based on charge-reversal chitosan nanoparticles for enhancing synergistic effect against multidrug resistance tumor. Nanomed Nanotechnol Biol Med 20:102015. https://doi.org/10.1016/j.nano.2019.102015

    Article  CAS  Google Scholar 

  79. Ghalei S, Hopkins S, Douglass M, Garren M, Mondal A, Handa H (2021) Nitric oxide releasing halloysite nanotubes for biomedical applications. J Colloid Interface Sci 590:277–289. https://doi.org/10.1016/j.jcis.2021.01.047

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Quinn JF, Whittaker MR, Davis TP (2015) Delivering nitric oxide with nanoparticles. J Control Release 205:190–205. https://doi.org/10.1016/j.jconrel.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  81. Yan H et al (2019) Emerging delivery strategies of carbon monoxide for therapeutic applications: from CO gas to CO releasing nanomaterials. Small 15(49):1–22. https://doi.org/10.1002/smll.201904382

    Article  CAS  ADS  Google Scholar 

  82. Nguyen D, Boyer C (2015) Macromolecular and inorganic nanomaterials scaffolds for carbon monoxide delivery: recent developments and future trends. ACS Biomater Sci Eng 1(10):895–913. https://doi.org/10.1021/acsbiomaterials.5b00230

    Article  CAS  PubMed  Google Scholar 

  83. Chakraborty I, Mascharak PK (2016) Mesoporous silica materials and nanoparticles as carriers for controlled and site-specific delivery of gaseous signaling molecules. Microporous Mesoporous Mater 234:409–419. https://doi.org/10.1016/j.micromeso.2016.07.028

    Article  CAS  Google Scholar 

  84. Ho TM, Howes T, Bhandari BR (2014) Encapsulation of gases in powder solid matrices and their applications: a review. Powder Technol 259:87–108. https://doi.org/10.1016/j.powtec.2014.03.054

    Article  CAS  Google Scholar 

  85. Chen X, Lee DS, Zhu X, Yam KL (2012) Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films. J Agric Food Chem 60(13):3492–3497. https://doi.org/10.1021/jf2045813

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not from profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Chaskar.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Research Involving Human and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakchoure, D., Azmi, N., Chaskar, J. et al. Application of Gasotransmitters in Nanomaterials-Based Food Packaging. J Package Technol Res 8, 1–13 (2024). https://doi.org/10.1007/s41783-024-00164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-024-00164-3

Keywords

Navigation