Skip to main content
Log in

Innovations in Packaging to Monitor and Maintain the Quality of the Food Products

  • Review Paper
  • Published:
Journal of Packaging Technology and Research Aims and scope Submit manuscript

Abstract

Packaging is a technology and art that has been developed to enclose and protect a variety of objects for use in trade, storage, and circulation. Creating concepts for active and intelligent packaging has improved the superiority of food products and produced a wealth of new outcomes for postponing the deterioration of packaged food. Unquestionably, one of the best advancements in packaging technology is active packaging. Active packaging, such as modified active packaging (MAP) systems, improves appearance and delays ripening while also extending the shelf life of fresh items, providing a high-quality food product and lowering economic losses. To maintain the freshness of packed food products like fresh fruits, vegetables, dairy, and meat products, there are several different packaging solutions available. By incorporating components like antimicrobial agents, antioxidants, carbon dioxide absorbers, etc. in the built-in packaging systems, such as the packaging films, sachets, or an absorbent pad, that either release or absorb active chemicals into the packaged goods or adjoining environment, aids in extending the stability of packed food products and improves the performance of the packaging. These elements can surround the food, preventing food deterioration and extending the shelf life of the product. This extensive analysis examines the cutting-edge active food packaging technologies that have recently been developed with the aim of preserving or extending the shelf life and quality of food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study can not be shared at this time as the data also forms part of an ongoing study. Data may be are available from the corresponding author upon reasonable request.

References

  1. Abe K, Watada AE (1991) Ethylene absorbent to maintain quality of lightly processed fruits and vegetables. J Food Sci 56(6):1589–1592. https://doi.org/10.1111/J.1365-2621.1991.TB08647.X

    Article  CAS  Google Scholar 

  2. Ahn BJ, Gaikwad KK, Lee YS (2016) Characterization, and properties of LDPE film with gallic-acid-based oxygen scavenging system useful as a functional packaging material. J Appl Polym Sci 133(43):1–8. https://doi.org/10.1002/APP.44138

    Article  Google Scholar 

  3. Akbar AAK (2014) Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95. https://doi.org/10.1016/J.FOODCONT.2013.09.065

    Article  CAS  Google Scholar 

  4. Alam AU, Rathi P, Beshai H, Sarabha GK, Deen MJ (2021) Fruit quality monitoring with smart packaging. Sensors 21:1509. https://doi.org/10.3390/s21041509

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  5. Alves-Silva JM, Dos Santos SMD, Pintado ME, Pérez-Aívarez JA, Ferńandez-López J, Viuda-Martos M (2013) Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control 32(2):371–378. https://doi.org/10.1016/j.foodcont.2012.12.022

    Article  CAS  Google Scholar 

  6. Anthierens T, Ragaert P, Verbrugghe S, Ouchchen A, De Geest BG, Noseda B, Mertens J, Beladjal L, De Cuyper D, Dierickx W, Du Prez F, Devlieghere F (2011) Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials. Innov Food Sci Emerg Technol 12(4):594–599. https://doi.org/10.1016/j.ifset.2011.06.008

    Article  CAS  Google Scholar 

  7. Arfat YA, Benjakul S, Vongkamjan K, Sumpavapol P, Yarnpakdee S (2015) Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil. J Food Sci Technol 52(10):6182–6193. https://doi.org/10.1007/s13197-014-1706-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ayhan Z (2003) Potential applications of nanomaterials in food packaging and interactions of nanomaterials with food. In: Silvestre C, Cimmino S (eds) Ecosustainable polymer nanomaterials for food packaging: Innovative solutions, characterization needs, safety and environmental issues. CRC Press, Boca Raton

    Google Scholar 

  9. Ayhan Z (2016) Use of zeolite-based ethylene absorbers as active packaging for horticultural products. Book of abstracts of International Congress- Food Technology. Quality and Safety, Novi Sad, Serbia, University, pp 25–27

    Google Scholar 

  10. Azeredo HMC, Correa DS (2021) Smart choices: mechanisms of intelligent food packaging. Curr Res Food Sci 4:932–936. https://doi.org/10.1016/j.crfs.2021.11.016

    Article  PubMed  PubMed Central  Google Scholar 

  11. Azevedo S, Cunha LM, Mahajan PV, Fonseca SC (2011A) pplication of simplex lattice design for development of moisture absorber for oyster mushrooms. Procedia Food Sci 1:184–189. https://doi.org/10.1016/j.profoo.2011.09.029

    Article  CAS  Google Scholar 

  12. Aziz M, Karboune S (2018) Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: a review. Crit Rev Food Sci Nutr 58(3):486–511. https://doi.org/10.1080/10408398.2016.1194256

    Article  CAS  PubMed  Google Scholar 

  13. Azlin-Hasim S, Cruz-Romero MC, Morris MA, Padmanabhan SC, Cummins E, Kerry JP (2016) The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food Bioprocess Technol 9(10):1661–1673. https://doi.org/10.1007/s11947-016-1745-7

    Article  CAS  Google Scholar 

  14. Barbiroli A, Bonomi F, Capretti G, Iametti S, Manzoni M, Piergiovanni L, Rollini M (2012) Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 26(2):387–392. https://doi.org/10.1016/J.FOODCONT.2012.01.046

    Article  CAS  Google Scholar 

  15. Barbosa-Pereira L, Aurrekoetxea GP, Angulo I, Paseiro-Losada P, Cruz JM (2014) Development of new active packaging films coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Sci 97(2):249–254. https://doi.org/10.1016/j.meatsci.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  16. Barbosa-Pereira L, Cruz JM, Sendón R, Rodríguez Bernaldo de Quirós A, Ares A, Castro-López M, Abad MJ, Maroto J, Paseiro-Losada P (2013) Development of antioxidant active films containing tocopherol to extend the shelf life of fish. Food Control 31(1):236–243. https://doi.org/10.1016/j.foodcont.2012.09.036

    Article  CAS  Google Scholar 

  17. Benyathiar P, Kumar P, Carpenter G, Brace J, Mishra DK (2022) Polyethylene terephthalate (PET) bottle-to-bottle recycling for the beverage industry: a review. Polymers 14(12):1–29. https://doi.org/10.3390/polym14122366

    Article  CAS  Google Scholar 

  18. Bhardwaj A, Alam T, Talwar N (2019) Recent advances in active packaging of agri-food products: a review. J Postharvest Technol 7(1):33–62

    Google Scholar 

  19. Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA (2013) Evaluation of the photocatalytic antimicrobial effects of a TiO nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Sci Technol 50(2):702–706. https://doi.org/10.1016/j.lwt.2012.07.027

    Article  CAS  Google Scholar 

  20. Boonruang K, Chonhenchob V, Singh SP, Chinsirikul W, Fuongfuchat A (2012) Comparison of various packaging films for mango export. Packag Technol Sci 25(2):107–118. https://doi.org/10.1002/pts.954

    Article  CAS  Google Scholar 

  21. Gutierrez-Aguirre BR, Llave-Davila RE, Olivera-Montenegro LA, Herrera-Nuñez E, Marzano-Barreda LA (2023) Effect of potassium permanganate as an ethylene scavenger and physicochemical characterization during the shelf life of fresh banana (Musa paradisiaca). Int J Food Sci. https://doi.org/10.1155/2023/4650023

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brockgreitens J, Abbas A (2016) Responsive food packaging: recent progress and technological prospects. Compr Rev Food Sci Food Saf 15(1):3–15. https://doi.org/10.1111/1541-4337.12174

    Article  PubMed  Google Scholar 

  23. Brody AL, Strupinsky EP, Kline LR (2001) Active packaging for food applications. CRC Press. ISBN 978-1-4200-318102.)

  24. Bumbudsanpharoke N, Choi J, Ko S (2015) Applications of nanomaterials in food packaging. J Nanosci Nanotechnol 15(9):6357–6372. https://doi.org/10.1166/jnn.2015.10847

    Article  CAS  PubMed  Google Scholar 

  25. Cahill PJ, Chen SY (2000) Oxygen scavenging condensation copolymers for bottles and packaging articles U.S. Patent 6083585

  26. Cao J, Li X, Wu K, Jiang W, Qu G (2015) Preparation of a novel PdCl2–CuSO4–based ethylene scavenger supported by acidified activated carbon powder and its effects on quality and ethylene metabolism of broccoli during shelf-life. Postharvest Biol Technol 99:50–57. https://doi.org/10.1016/j.postharvbio.2014.07.017

    Article  CAS  Google Scholar 

  27. Carpena M, Nuñez-Estevez B, Soria-Lopez A, Garcia-Oliveira P, Prieto MA (2021) Essential oils and their application on active packaging systems: a review. Resources 10(1):7. https://doi.org/10.3390/resources10010007

    Article  Google Scholar 

  28. Cestari LA, Gaiotto RC, Antigo JL, Scapim MRS, Madrona GS, Yamashita F, Pozza MSS, Prado IN (2015) Effect of active packaging on low- sodium restructured chicken steaks. J Food Sci Technol 52(6):3376–3382. https://doi.org/10.1007/s13197-014-1357-z

    Article  CAS  PubMed  Google Scholar 

  29. Chaudhary V, Punia Bangar S, Thakur N, Trif M (2022) Recent advancements in smart biogenic packaging: reshaping the future of the food packaging industry. Polymers 14(4):829. https://doi.org/10.3390/polym14040829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen J, Brody AL (2013) Use of active packaging structures to control the microbial quality of a ready-to-eat meat product. Food Control 30(1):306–310. https://doi.org/10.1016/j.foodcont.2012.07.002

    Article  CAS  Google Scholar 

  31. Chopra S, Dhumal S, Abeli P, Beaudry R, Almenar E (2017) Metal-organic frameworks have utility in adsorption and release of ethylene and 1-methylcyclopropene in fresh produce packaging. Postharvest Biol Technol 130: 48–55. https://www.sciencedirect.com/science/article/pii/S0925521417300947

  32. Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M (2017) Citric acid: emerging applications of key biotechnology industrial product. Chem Cent J 11:22. https://doi.org/10.1186/s13065-017-0251-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Conte A, Longano D, Costa C, Ditaranto N, Ancona A, Cioffi N, Scrocco C, Sabbatini L, Contò F, Del Nobile MA (2013) A novel preservation technique applied to fiordilatte cheese. Innov Food Sci Emerg Technol 19:158–165. https://doi.org/10.1016/j.ifset.2013.04.010

    Article  CAS  Google Scholar 

  34. Correa JP, Molina V, Sanchez M, Kainz C, Eisenberg P, Massani MB (2017) Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packag Shelf Life 11:31–39. https://doi.org/10.1016/j.fpsl.2016.11.004

    Article  Google Scholar 

  35. Cutter CN, Willett JL, Siragusa GR (2001) Improved antimicrobial activity of nisin-incorporated polymer films by formulation change and addition of food grade chelator. Lett Appl Microbiol 33(4):325–328. https://doi.org/10.1046/j.1472-765x.2001.01005.x

    Article  CAS  PubMed  Google Scholar 

  36. Damaj Z, Joly C, Guillon E (2014) Toward new polymeric oxygen scavenging systems: formation of poly (vinyl alcohol) oxygen scavenger film. Packag Technol Sci 28(4):293–302. https://doi.org/10.1002/pts.2112

    Article  CAS  Google Scholar 

  37. Dari L, Nenguwo N, Afari-Sefa V (2018) Evaluation of packaging liners in wooden and plastic crates for handling tomatoes. J Postharvest Technol 6(1):36–40. https://www.researchgate.net/publication/328048876

  38. De Kruijf N, Van Beest M, Rijk R, Sipiläinen-Malm T, Losada PP, Meulenaer BD (2002) Active and intelligent packaging: applications and regulatory aspects. Food Addit Contaminants 19(supl):144–162. https://doi.org/10.1080/02652030110072722

    Article  CAS  Google Scholar 

  39. Devlieghere F, Johan D (2000) Influence of dissolved carbon dioxide on the growth of Spoilage bacteria. Lebensmittel-wissenschaft Und-technologie-Food Science and Technology 33(8):531–537. https://doi.org/10.1006/fstl.2000.0705

    Article  CAS  Google Scholar 

  40. Devlieghere F, Vermeiren L, Bockstal A, Debevere J (2000) Study on antimicrobial activity of aq food packaging material containing potassium sorbate. Acta Aliment 29(2):137–146. https://doi.org/10.1556/aalim.29.2000.2.4

    Article  CAS  Google Scholar 

  41. Dhall RK (2013) Ethylene in post-harvest quality management of horticultural crops: a review research & reviews. J Crop Sci Technol 2(2). ISSN: 2319–3395

  42. Di Maio L, Scarfato P, Galdi MR, Incarnato L (2015) Development and oxygen scavenging performance of three-layer active PET films for food packaging. J Appl Polym Sci 132(7):1–10. https://doi.org/10.1002/app.41465

    Article  CAS  Google Scholar 

  43. Drago E, Campardelli R, Pettinato M, Perego P (2020) Innovations in smart packaging concepts for food: an extensive review. Foods 9:16–28. https://doi.org/10.3390/foods9111628

    Article  CAS  Google Scholar 

  44. Droval AA, Benassi VT, Rossa A, Prudencio SH, Paiao FG, Shimokomak IM (2012) Consumer attitudes and preferences regarding pale, soft, and exudative broiler breast meat. J Appl Poultry Res 21(3):502–507. https://doi.org/10.3382/japr.2011-00392

    Article  Google Scholar 

  45. Duda-Chodak A, Tarko T, Petka-Poniatowska K (2023) Antimicrobial compounds in food packaging. Int J Mol Sci 24(3):2457. https://doi.org/10.3390/ijms24032457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Echeverría I, López-Caballero ME, Gómez-Guillén MC, Mauri AN, Montero MP (2018) Active nanocomposite films based on soy proteins-montmorillonite- clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. Int J Food Microbiol 266:142–149. https://doi.org/10.1016/j.ijfoodmicro.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  47. Edens L, Farin F, Ligtvoet AF, Van der Plaat JB (1992) Dry yeast immobilized in wax or paraffin for scavenging oxygen U.S. Patent 5106633

  48. Pérez-Botella E, Valencia S, Rey F (2022) Zeolites in adsorption processes: state of the art and future prospects. Chem Rev 122(24):17647–17695. https://doi.org/10.1021/acs.chemrev.2c00140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ejaz M, Arfat YA, Mulla M, Ahmed J (2018) Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packag Shelf Life 15:113–121. https://doi.org/10.1016/j.fpsl.2017.12.004

    Article  Google Scholar 

  50. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11(4):742–748. https://doi.org/10.1016/j.ifset.2010.06.003

    Article  CAS  Google Scholar 

  51. Esturk O, Ayhan Z, Gokkurt T (2014) Production, and application of active packaging film with ethylene adsorber to increase the shelf life of broccoli (Brassica oleracea L. var. Italica). Packag Technol Sci 27(3):179–191. https://doi.org/10.1002/pts.2023

    Article  CAS  Google Scholar 

  52. European Commission (2009) EU Guidance to the Commission Regulation (EC) No 450/2009 of 29 May 2009 on Active and intelligent materials and articles intended to come into the contact with food (version 1.0)

  53. European Commission (2011) Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European parliament and of the council by establishing a union list of food additives (text with EEA relevance)

  54. Fasihnia SH, Peighambardoust SH, Peighambardoust SJ, Oromiehie A (2018) Development of novel active polypropylene based packaging films containing different concentrations of sorbic acid. Food Packag Shelf Life 18:87–94. https://doi.org/10.1016/j.fpsl.2018.10.001

    Article  Google Scholar 

  55. Fernández A, Picouet P, Lloret E (2010) Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol 142(1–2):222–228. https://doi.org/10.1016/j.ijfoodmicro.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  56. Foltynowicz Z, Bardenshtein A, Sängerlaub S, Antvorskov H, Kozak W (2017) Nanoscale, zero valent iron particles for application as oxygen scavenger in food packaging. Food Packag Shelf Life 11:74–83. https://doi.org/10.1016/j.fpsl.2017.01.003

    Article  Google Scholar 

  57. Foralosso FB, Fronza N, DosSantos JHZ, Capeletti LB, Quadri MGN (2014) The use of duo-functional PVC film for conservation of minimally processed apples. Food Bioprocess Technol 7(5):1483–1495. https://doi.org/10.1007/s11947-013-1233-2

    Article  CAS  Google Scholar 

  58. Franklin NB, Cooksey KD, Getty KJK (2004) Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. J Food Prot 67(3):480–485. https://doi.org/10.4315/0362-028x-67.3.480

    Article  CAS  PubMed  Google Scholar 

  59. Gaikwad KK, Singh S, Ajji A (2018) Moisture absorbers for food packaging applications. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0810-z

    Article  Google Scholar 

  60. Gaikwad KK, Singh S, Lee YS (2017) A new pyrogallol coated oxygen scavenging film and their effect on oxidative stability of soybean oil under different storage conditions. Food Sci Biotechnol 26(6):1535–1543. https://doi.org/10.1007/s10068-017-0232-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gaikwad KK, Singh S, Lee YS (2017) A pyrogallol-coated modified LDPE film as an oxygen scavenging film for active packaging materials. Prog Org Coat 111:186–195. https://doi.org/10.1016/j.porgcoat.2017.05.016

    Article  CAS  Google Scholar 

  62. Gaikwad KK, Singh S, Negi SY (2019) Ethylene scavengers for active packaging of fresh food produce. Environ Chem Lett 18(2):1–16. https://doi.org/10.1007/s10311-019-00938-1

    Article  CAS  Google Scholar 

  63. Galdi MR, Incarnato L (2011) Influence of composition on structure and barrier properties of active PET films for food packaging applications. Packag Technol Sci 24(2):89–102. https://doi.org/10.1002/pts.917

    Article  CAS  Google Scholar 

  64. Ganiari S, Choulitoudi E, Oreopoulou V (2017) Edible and active films, and coatings carriers of natural antioxidants for lipid food. Trends Food Sci Technol 68:70–82. https://doi.org/10.1016/j.tifs.2017.08.009

    Article  CAS  Google Scholar 

  65. Gao R, Hu H, Shi T, Bao Y, Sun Q, Wang L, Ren Y, Jin W, Yuan L (2022) Incorporation of gelatin and Fe2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Curr Res Food Sci 5:677–686. https://doi.org/10.1016/j.crfs.2022.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. García-Soto B, Miranda JM, Rodríguez-Bernaldo de Quirós A, Sendón R, Rodríguez-Martínez AV, Barros-Velázquez J, Aubourg SP (2015) Effect of biodegradable film (lyophilised alga Fucus spiralis and sorbic acid) on quality properties of refrigerated megrim (Lepidorhombus whiffiagonis). Int J Food Sci Technol 50(8):1891–1900. https://doi.org/10.1111/ijfs.12821

    Article  CAS  Google Scholar 

  67. Gerassimidou S, Lanska P, Hahladakis JN, Lovat E, Vanzetto S, Geueke B, Groh KJ, Muncke J, Maffini M, Martin OV, Iacovidou E (2022) Unpacking the complexity of the PET drink bottles value chain: a chemicals perspective. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2022.128410

    Article  PubMed  Google Scholar 

  68. Gerez CL, Torres MJ, Font de Valdez G, Rollán G (2013) Control of spoilage fungi by lactic acid bacteria. Biol Control 64(3):231–237. https://doi.org/10.1016/j.biocontrol.2012.10.009

    Article  CAS  Google Scholar 

  69. Gibis D, Rieblinger K (2011) Oxygen scavenging films for food application. Procedia Food Sci 1:229–234. https://doi.org/10.1016/j.profoo.2011.09.036

    Article  CAS  Google Scholar 

  70. Giuseppe F, Coffigniez F, Aouf C, Guillard V, Torrieri E (2022) Activated gallic acid as radical and oxygen scavenger in biodegradable packaging film. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2022.100811

    Article  Google Scholar 

  71. Gohil RM, Wysock WA (2014) Designing efficient oxygen scavenging coating formulations for food packaging applications. Packag Technol Sci 27(8):609–623. https://doi.org/10.1002/pts.2053

    Article  CAS  Google Scholar 

  72. Gomes C, Castell-Perez ME, Chimbombi E, Barros F, Sun D, Liu J, Sue HJ, Sherman P, Dunne P, Wright AO (2009) Effect of oxygen-absorbing packaging on the shelf life of a liquid-based component of military operational rations. J Food Sci 74(4):E167–E176. https://doi.org/10.1111/j.1750-3841.2009.01120.x

    Article  CAS  PubMed  Google Scholar 

  73. Graciano-Verdugo AZ, Soto-Valdez H, Peralta E, Cruz-Zárate P, Islas-Rubio AR, Sánchez-Valdes S, Sánchez-Escalante A, González-Méndez N, González-Ríos H (2010) Migration of α-tocopherol from LDPE films to corn oil and its effect on the oxidative stability. Food Res Int 43(4):1073–1078. https://doi.org/10.1016/j.foodres.2010.01.019

    Article  CAS  Google Scholar 

  74. Graf E (1994) Oxygen removal. U.S. Patent 5284871

  75. Granda-Restrepo DM, Soto-Valdez H, Peralta E, Troncoso-RojasVallejo-Córdoba RB, Gómez-Meza N, Graciano-Verdugo AZ (2009) Migration of α-tocopherol from an active multilayer film into whole milk powder. Food Res Int 42(10):1396–1402. https://doi.org/10.1016/j.foodres.2009.07.007

    Article  CAS  Google Scholar 

  76. Granda-Restrepo D, Peralta E, Troncoso-Rojas R, Soto-Valdez H (2009) Release of antioxidants from co-extruded active packaging developed for whole milk powder. Int Dairy J 19(8):481–488. https://doi.org/10.1016/j.idairyj.2009.01.002

    Article  CAS  Google Scholar 

  77. Guo M, Jin TZ, Yang R (2014) Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat. Food Bioprocess Technol 7(11):3293–3307. https://doi.org/10.1007/s11947-014-1322-x

    Article  CAS  Google Scholar 

  78. Hansen AA, Moen B, Rødbotten M, Berget I, Pettersen MK (2016) Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO2 emitter on quality parameters of cod loins (Gadus morhua). Food Packag Shelf Life 9:29–37. https://doi.org/10.1016/j.fpsl.2016.05.005

    Article  Google Scholar 

  79. Hanula M, Pogorzelska-Nowicka E, Pogorzelski G, Szpicer A, Wojtasik-Kalinowska I, Wierzbicka A, Półtorak A (2021) Active packaging of button mushrooms with zeolite and açai extract as an innovative method of extending its shelf life. Agriculture 11(7):653. https://doi.org/10.3390/agriculture11070653

    Article  CAS  Google Scholar 

  80. Higueras L, López-Carballo G, Herńandez-Muñoz P, Gavara R, Rollini M (2013) Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-l-arginate) and its application to fresh chicken. Int J Food Microbiol 165(3):339–345. https://doi.org/10.1016/j.ijfoodmicro.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  81. Holck AL, Pettersen MK, Moen MH, Sørheim O (2014) Prolonged shelf life and reduced drip loss of chicken filets by the use of carbon dioxide emitters and modified atmosphere packaging. J Food Prot 77(7):1133–1141. https://doi.org/10.4315/0362-028x.jfp-13-428

    Article  PubMed  Google Scholar 

  82. Hu Q, Fang Y, Yang Y, Ma N, Zhao L (2011) Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Res Int 44(6):1589–1596. https://doi.org/10.1016/j.foodres.2011.04.018

    Article  CAS  Google Scholar 

  83. Huang T, Qian Y, Wei J, Zhou C (2019) Polymeric antimicrobial food packaging and its applications. Polymers (Basel) 11(3):560. https://doi.org/10.3390/polym11030560

    Article  CAS  PubMed  Google Scholar 

  84. Hutter S, Rüegg N, Yildirim S (2016) Use of palladium-based oxygen scavenger to prevent discoloration of ham. Food Packag Shelf Life 8:56–62. https://doi.org/10.1016/j.fpsl.2016.02.004

    Article  Google Scholar 

  85. Ivanković A, Zeljko K, Talić S, Bevanda AM, Lasić M (2017) Review: biodegradable packaging in the food industry. J Food Saf Food Qual 68:26–38. https://doi.org/10.2376/0003-925X-68-26

    Article  Google Scholar 

  86. Júnior AV, Fronza N, Bortolini F, Dezen D, Huber E, Zimnoch dos Santos JH, Francisco Machado RA, Novy-Quadri MG (2015) Biodegradable duo-functional active film: antioxidant and antimicrobial actions for the conservation of beef. Food Bioprocess Technol 8:75–87. https://doi.org/10.1007/s11947-014-1376-9

    Article  CAS  Google Scholar 

  87. Jacobsson A, Nielsen T, Sjöholm I (2004) Effects of type of packaging material on shelf-life of fresh broccoli by means of changes in weight, color and texture. Eur Food Res Technol 218(2):157–163. https://doi.org/10.1007/s00217-003-0820-2

    Article  CAS  Google Scholar 

  88. Joerger RD, Sabesan S, Visioli D, Urian D, Joerger MC (2009) Antimicrobial activity of chitosan attached to ethylene copolymer films. Packag Technol Sci 22(3):125–138. https://doi.org/10.1002/pts.822

    Article  CAS  Google Scholar 

  89. Jofré A, Garriga M, Aymerich T (2007) Inhibition of Listeria monocytogenes in cooked ham through active packaging with natural antimicrobials and high-pressure processing. J Food Prot 70(11):2498–2502. https://doi.org/10.4315/0362-028x-70.11.2498

    Article  PubMed  Google Scholar 

  90. Jofré A, Garriga M, Aymerich T (2008) Inhibition of Salmonella sp. Listeria monocytogenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Sci 78(1–2):53–59. https://doi.org/10.1016/j.meatsci.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  91. Julkapli NM, Bagheri S (2016) Developments in nano-additives for paper industry. J Wood Sci 62(2):117–130. https://doi.org/10.1007/s10086-015-1532-5

    Article  Google Scholar 

  92. Küçük V (2006) Bazı meyve ve sebzelerde rafömrünün uzatılması için zeolitle birlikte paketlemenin ürünün kalite özelliklerine etkisinin incelenmesi. İzmir, Türkiye: Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı 185

  93. Kaewklin P, Siripatrawan U, Suwanagul A, Lee YS (2018) Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. Int J Biol Macromol 112:523–529. https://doi.org/10.1016/j.ijbiomac.2018.01.124

    Article  CAS  PubMed  Google Scholar 

  94. Kamarudin SH, Rayung M, Abu F, Ahmad S, Fadil F, Karim AA, Norizan MN, Sarifuddin N, Desa MSZM, Basri MSM et al (2022) A review on antimicrobial packaging from biodegradable polymer composites. Polymers 14(1):174. https://doi.org/10.3390/polym14010174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kandasamy P (2022) Respiration rate of fruits and vegetables for modified atmosphere packaging: a mathematical approach. J Postharvest Technol 10(1): 88–102 www.jpht.in

  96. Kaur P, Ghoshal G, Banerjee UC (2019) Traditional bio-preservation in beverages: fermented beverages. Preserv Preserv Approach Beverages 15:69–113. https://doi.org/10.1016/b978-0-12-816685-7.00003-3

    Article  Google Scholar 

  97. Kaur R, Yadav N (2019) Biodegradable polymeric film for food packaging. J Appl Packag Res 11(2): 21–35. https://scholarworks.rit.edu/japr/vol11/iss2/2

  98. Kaya HI, Sabanoğlu S, Yapar A, Şimşek Ö (2015) Utilization of antimicrobial agents at pre- and post-smoking on the microbial quality of hot- smoked rainbow trout (Oncorhynchus mykiss) fillets. Acta Aliment Hung 44(2):289–296. https://doi.org/10.1556/AAlim.2014.2222

    Article  CAS  Google Scholar 

  99. Khan A, Gallah H, Ried B, Bouchard J, Safrany A, Lacroix M (2016) Genipin cross-linked antimicrobial nanocomposite films and gamma irradiation to prevent the surface growth of bacteria in fresh meats. Innov Food Sci Emerg Technol 35:96–102. https://doi.org/10.1016/j.ifset.2016.03.011

    Article  CAS  Google Scholar 

  100. Kim HY, Gornsawun G, Shin IS (2015) Antibacterial activities of isothiocyanate (ITCs) extracted from horseradish (Armoracia rusticana) root in liquid and vapor phases against 5 dominant bacteria isolated from low-salt Jeotgal, a Korean salted and fermented seafood. Food Sci Biotechnol 24(4):1405–1412. https://doi.org/10.1007/s10068-015-0180-2

    Article  CAS  Google Scholar 

  101. Kim YM, Paik HD, Lee DS (2002) Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film. J Sci Food Agric 82(9):998–1002. https://doi.org/10.1002/jsfa.1125

    Article  CAS  Google Scholar 

  102. Kumara S, Mukherjee A, Duttaa J (2020) Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 97:196–209. https://doi.org/10.1016/j.tifs.2020.01.002

    Article  CAS  Google Scholar 

  103. Kuorwel KK, Cran MJ, Orbell JD, Buddhadasa S, Bigger SW (2015) Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr Rev Food Sci Food Saf 14(4):411–430. https://doi.org/10.1111/1541-4337.12139

    Article  CAS  Google Scholar 

  104. López-de-Dicastillo C, Gómez-Estaca J, Catalá R, Gavara R, Hernández-Muñoz P (2012a) Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chem 131(4):1376–1384. https://doi.org/10.1016/j.foodchem.2011.10.002

    Article  CAS  Google Scholar 

  105. López-de-Dicastillo C, Pezo D, Nerín C, López-Carballo G, Catalá R, Gavara R, Hernández-Muñoz P (2012b) Reducing oxidation of foods through antioxidant active packaging based on ethyl vinyl alcohol and natural flavonoids. Packag Technol Sci 25(8):457–466. https://doi.org/10.1002/pts.992

    Article  CAS  Google Scholar 

  106. Lee DS (2010) Packaging and the microbial shelf life of food. In: Robertson GL (ed) Food packaging and shelf life. CRC Press, Boca Raton

    Google Scholar 

  107. Lee JS, Chang Y, Lee ES, Song HG, Chang PS, Han J (2018) Ascorbic acid-based oxygen scavenger in active food packaging system for raw meatloaf. J Food Sci 83(3):682–688. https://doi.org/10.1111/1750-3841.14061

    Article  CAS  PubMed  Google Scholar 

  108. Lee KY, Lee JH, Yang HJ, Song KB (2016) Characterization of a starfish gelatin film containing vanillin and its application in the packaging of crab stick. Food Sci Biotechnol 25(4):1023–1028. https://doi.org/10.1007/s10068-016-0165-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee SJ, Rahman ATMM (2014) Intelligent packaging for food products. In: Han JH (ed) Innovations in food packaging, 2nd edn. Academic Press, San Diego

    Google Scholar 

  110. Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. Var. inermis (Bunge) Rehd). Food Chem 114(2):547–552. https://doi.org/10.1016/j.foodchem.2008.09.085

    Article  CAS  Google Scholar 

  111. Li L, Zhao C, Zhang Y, Yao J, Yang W, Hu Q, Wang C, Cao C (2017) Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice. Food Chem 215:477–482. https://doi.org/10.1016/j.foodchem.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  112. Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P (2011) Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol 46(9):1947–1955. https://doi.org/10.1111/j.1365-2621.2011.02706.x

    Article  CAS  Google Scholar 

  113. Li YH, Zhang LW, Wang WJ, Han X (2013) Differences in particle characteristics and oxidized flavor as affected by heat-related processes of milk powder. J Dairy Sci 96(8):4784–4793. https://doi.org/10.3168/jds.2012-5799

    Article  CAS  PubMed  Google Scholar 

  114. Limjaroen P, Ryser E, Lockhart H, Harte B (2006) Inactivation of Listeria monocytogenes on beef Bologna and Cheddar cheese using polyvinyl-idene chloride films containing sorbic acid. J Food Sci 70(5):M267-271. https://doi.org/10.1111/j.1365-2621.2005.tb09982.x

    Article  Google Scholar 

  115. Llana-Ruiz-Cabello M, Pichardo S, Baños A, Núñez C, Bermúdez JM, Guillamón E, Aucejo S, Cameán AM (2015) Characterization and evaluation of PLA films containing an extract of Allium spp to be used in the packaging of ready-to-eat salads under controlled atmospheres. LWT-Food Sci Technol 64(2):1354–1361. https://doi.org/10.1016/j.lwt.2015.07.057

    Article  CAS  Google Scholar 

  116. Lopes LF, Meca G, Bocate KCP, Nazareth TM, Bordin K, Luciano FB (2017) Development of food packaging system containing allyl isothiocyanate against Penicillium nordicum in chilled pizza: preliminary study. J Food Process Preserv 42(2):e13436. https://doi.org/10.1111/jfpp.13436

    Article  CAS  Google Scholar 

  117. Lopez-Gomez A, Ros-Chumillas M (2010) Packaging and shelf life of orange juice. In: Robertson GL (ed) Food packaging and shelf life. CRC Press, Boca Raton

    Google Scholar 

  118. Loren A, Loret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24(1):19–29. https://doi.org/10.1016/j.tifs.2011.10.001

    Article  CAS  Google Scholar 

  119. Mahajan PV, Rodrigues FA, Motel A, Leonhard A (2008) Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). Postharvest Biol Technol 48(3):408–414. https://doi.org/10.1016/j.postharvbio.2007.11.007

    Article  CAS  Google Scholar 

  120. Maloba FW, Rooney ML, Wormell P, Nguyen M (1996) Improved oxidative stability of sunflower oil in the presence of an oxygen-scavenging film. J Am Oil Chemists’ Soc 73(2):181–185. https://doi.org/10.1007/BF02523892

    Article  CAS  Google Scholar 

  121. Mansourbahmani S, Ghareyazie B, Zarinnia V, Kalatejari S, Mohammadi RS (2018) Study on the efficiency of ethylene scavengers on the maintenance of postharvest quality of tomato fruit. J Food Measure Characteriz 12:691–701. https://doi.org/10.1007/s11694-017-9682-3

    Article  Google Scholar 

  122. Manzanarez-López F, Soto-Valdez H, Auras R, Peralta E (2011) Release of α-tocopherol from poly (lactic acid) films, and its effect on the oxidative stability of soybean oil. J Food Eng 104(4):508–517. https://doi.org/10.1016/j.jfoodeng.2010.12.029

    Article  CAS  Google Scholar 

  123. Marcos B, Sárraga C, Castellari M, Kappen F, Schennink Arnau J, G (2014) Development of biodegradable films with antioxidant properties based on polyesters containing α-tocopherol and olive leaf extract for food packaging applications. Food Packag Shelf Life 1(2):140–150. https://doi.org/10.1016/j.fpsl.2014.04.002

    Article  Google Scholar 

  124. Martínez-Romero D, Guillén F, Castillo S, Zapata PJ, Valero D, Serrano M (2009) Effect of ethylene concentration on quality parameters of fresh tomatoes stored using a carbon-heat hybrid ethylene scrubber. Postharvest Biol Technol 51(2):206–211. https://doi.org/10.1016/j.postharvbio.2008.07.011

    Article  CAS  Google Scholar 

  125. Mascheroni E, Rampazzo R, Ortenzi MA, Piva G, Bonetti S, Piergiovanni L (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23:779–793. https://doi.org/10.1007/s10570-015-0853-2

    Article  CAS  Google Scholar 

  126. Matche RS, Sreekumar RK, Ra B (2011) Modification of linear low-density polyethylene film using oxygen scavengers for its application in storage of bun and bread. J Appl Polym Sci 122(1):55–63. https://doi.org/10.1002/app.33718

    Article  CAS  Google Scholar 

  127. Mbuge DO, Negrini R, Nyakundi LO, Kuate SP, Bandyopadhyay R, Muiru WM, Torto B, Mezzenga R (2016) Application of superabsorbent polymers (SAP) as desiccants to dry maize and reduce aflatoxin contamination. J Food Sci Technol 53(8):3157–3165. https://doi.org/10.1007/s13197-016-2289-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mihaly Cozmuta A, Peter A, Mihaly Cozmuta L, Nicula C, Crisan L, Baia L, Turila A (2015) Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread. Chemical and microbiological investigations. Packag Technol Sci 28(4):271–284. https://doi.org/10.1002/pts.2103

    Article  CAS  Google Scholar 

  129. Miller CW, Nguyen MH, Rooney M, Kailasapathy K (2003) The control of dissolved oxygen content in probiotic yogurts by alternative packaging materials. Packag Technol Sci 16(2):61–67. https://doi.org/10.1002/pts.612

    Article  CAS  Google Scholar 

  130. Min S, Harris LJ, Krochta JM (2005) Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system against Salmonella enterica and Escherichia coli O157:H7. J Food Sci 70(7):m332-338. https://doi.org/10.1111/j.1365-2621.2005.tb11476.x

    Article  CAS  Google Scholar 

  131. Mu H, Gao H, Chen H, Tao F, Fang X, Ge L (2013) A nano sized oxygen scavenger: preparation and antioxidant application to roasted sunflower seeds and walnuts. Food Chem 136(1):245–250. https://doi.org/10.1016/j.foodchem.2012.07.121

    Article  CAS  PubMed  Google Scholar 

  132. Muller K (2013) Active packaging concepts - are they able to reduce food waste? In: Proceedings of the 5th International Workshop Cold Chain Management; University Bonn, Germany

  133. Natrajan N, Sheldon BW (2000) Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. J Food Prot 63(9):1189–1196. https://doi.org/10.4315/0362-028x-63.9.1189

    Article  CAS  PubMed  Google Scholar 

  134. Nešić A, Meseldzija S, Cabrera-Barjas G, Onjia A (2022) Novel biocomposite films based on high methoxyl pectin rein-forced with zeolite Y for food packaging applications. Foods 11(3):360. https://doi.org/10.3390/foods11030360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nestorson A, Neoh KG, Kang ET, Järnström L, Leufvén A (2008) Enzyme immobilization in latex dispersion coatings for active food packaging. Packag Technol Sci 21(4):193–205. https://doi.org/10.1002/pts.796

    Article  CAS  Google Scholar 

  136. Nur-Hanani ZA, Sonawane AD, Mahajan PV (2023) Mahajan PV 2023 Impact of humidity, temperature and condensation on O2 and CO2 transmission rate of modified atmosphere packages. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2023.101132

    Article  Google Scholar 

  137. Oggiano G, Pokimica B, Popović T, Takić M (2023) Beneficial properties of zeolite. Ital J Food Sci 35(1):72–78. https://doi.org/10.15586/ijfs.v35i1.2325

    Article  CAS  Google Scholar 

  138. Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44(3):185–193. https://doi.org/10.1080/10408690490441578

    Article  CAS  PubMed  Google Scholar 

  139. Pacholi S, Likhitkar A, D’Souza A (2017) Packaging in keeping the food fresh—a review. Int J Eng Res Adv Technol 3(9):19–30. https://doi.org/10.7324/IJERAT.2017.3131

    Article  Google Scholar 

  140. Padrão J, Gonçalves S, Silva JP, Sencadas V, Lanceros-Méndez S, Pinheiro AC, Vicente AA, Rodrigues LR, Dourado F (2016) Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids 58:126–140. https://doi.org/10.1016/j.foodhyd.2016.02.019

    Article  CAS  Google Scholar 

  141. Panea B, Ripoll G, Gonzaĺez J, Fernańdez-Cuello A, Albert P (2014) Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J Food Eng 123:104–112. https://doi.org/10.1016/j.jfoodeng.2013.09.029

    Article  CAS  Google Scholar 

  142. Pang YH, Sheen S, Zhou S, Liu L, Yam KL (2013) Antimicrobial effects of allyl Isothiocyanate and modified atmosphere on Pseduomonas aeruginosa in fresh catfish fillet under abuse temperatures. J Food Sci 78(4):M555-559. https://doi.org/10.1111/1750-3841.12065

    Article  CAS  PubMed  Google Scholar 

  143. Pant AF, Sängerlaub S, Müller K (2017) Gallic acid as an oxygen scavenger in biobased multilayer packaging films. Materials 10(5):1–11. https://doi.org/10.3390/ma10050489

    Article  CAS  Google Scholar 

  144. Papadochristopoulos A, Kerry JP, Fegan N, Burgess CM, Duffy G (2021) Natural anti-microbials for enhanced microbial safety and shelf-life of processed packaged meat. Foods 10(7):1598. https://doi.org/10.3390/foods10071598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Park DR, Zhang J, Ikeue K, Yamashita H, Anpo M (1999) Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts in the presence of O2 and H2O. J Catal 185:114–119. https://doi.org/10.1006/jcat.1999.2472

    Article  CAS  Google Scholar 

  146. Park SI, Marsh KS, Dawson P (2010) Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension. Meat Sci 85(3):493–499. https://doi.org/10.1016/j.meatsci.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  147. Peighambardoust SH, Fasihnia SH, Peighambardoust SJ, Pateiro M, Domínguez R, Lorenzo JM (2021) Active polypropylene-based films incorporating combined antioxidants and antimicrobials: preparation and characterization. Foods 10:722. https://doi.org/10.3390/foods10040722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pereira de Abreu DA, Cruz JM, Losada PP (2012) Active and intelligent packaging for the food industry. Food Rev Intl 28(2):146–187. https://doi.org/10.1080/87559129.2011.595022

    Article  CAS  Google Scholar 

  149. Perkins ML, Zerdin K, Rooney ML, D’Arcy BR, Deeth HC (2007) Active packaging of UHT milk to prevent the development of stale flavour during storage. Packag Technol Sci 20(2):137–146. https://doi.org/10.1002/pts.749

    Article  CAS  Google Scholar 

  150. Pettersen MK, Hansen AA, Mielnik M (2014) Effect of different packaging methods on quality and shelf life of fresh Reindeer meat. Packag Technol Sci 27(12):987–997. https://doi.org/10.1002/pts.2075

    Article  CAS  Google Scholar 

  151. Piñeros-Hernandez D, Medina-Jaramillo C, López-Córdoba A, Goyanes S (2017) Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids 63:488–495. https://doi.org/10.1016/j.foodhyd.2016.09.034

    Article  CAS  Google Scholar 

  152. Polyakov VA, Miltz J (2016) Modelling of the temperature effect on oxygen absorption by iron-based oxygen scavengers. J Food Sci 81(1):E76-85. https://doi.org/10.1111/1750-3841.13148

    Article  CAS  PubMed  Google Scholar 

  153. Quesada J, Sendra E, Navarro C, Sayas-Barberá E (2016) Antimicrobial active packaging including chitosan films with Thymus vulgaris L. essential oil for ready-to-eat meat. Foods 5(3): 57. https://doi.org/10.3390/foods5030057

  154. Radusin TI, Ristić IS, Pilić BM, Novaković AR (2016) Antimicrobial nanomaterials for food packaging applications. J Food Feed Res 43(2):119–126. https://doi.org/10.5937/FFR1602119R

    Article  CAS  Google Scholar 

  155. Rahayu D, Bintoro N (2019) Mathematical analysis and modelling of respiration rate of tropical climacteric produces during storage under various temperatures. IOP Conf Ser 355:012034

    Article  Google Scholar 

  156. Realini CE, Marcos B (2014) Active and intelligent packaging systems for a modern society. Meat Sci 98(3):404–419. https://doi.org/10.1016/j.meatsci.2014.06.031

    Article  PubMed  Google Scholar 

  157. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  158. Rodriguez-Garcia I, Cruz-Valenzuela MR, Silva-Espinoza BA, Gonzalez-Aguilar GA, Moctezuma E, Gutierrez-Pacheco MM, Tapia-Rodriguez MR, Ortega-Ramirez LA, Ayala-Zavala JF (2016) Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. J Sci Food Agric 96(11):3772–3778. https://doi.org/10.1002/jsfa.7568

    Article  CAS  PubMed  Google Scholar 

  159. Rollini M, Nielsen T, Musatti A, Limbo S, Piergiovanni L, Munoz PH, Gavara R (2016) Antimicrobial performance of two different packaging materials on the microbiological quality of fresh salmon. Coatings 6(1):1–7. https://doi.org/10.3390/coatings6010006

    Article  CAS  Google Scholar 

  160. Romainor AN, Chin SF, Lihan S (2021) Antimicrobial starch-based film for food packaging application. Starch. https://doi.org/10.1002/star.202100207

    Article  Google Scholar 

  161. Rooney ML (1995) Active packaging in polymer films. In: Rooney ML (ed) Active packaging. Blackie Academic and Professional, London

    Chapter  Google Scholar 

  162. Ruiz-Navajas Y, Viuda-Martos M, Sendra E, Perez-Alvarez JA, Fernández-López J (2013) In Vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. J Food Prot 76(7):1218–1225. https://doi.org/10.4315/0362-028x.jfp-12-554

    Article  CAS  PubMed  Google Scholar 

  163. Rux G, Mahajan PV, Geyer M, Linke M, Pant A, Saengerlaub S, Caleb OJ (2015) Application of humidity-regulating tray for packaging of mushrooms. Postharvest Biol Technol 108:102–110. https://doi.org/10.1016/j.postharvbio.2015.06.010

    Article  Google Scholar 

  164. Rux G, Mahajan PV, Linke M, Pant A, Sängerlaub S, Caleb OJ, Geyer M (2016) Humidity-regulating trays: moisture absorption kinetics and applications for fresh produce packaging. Food Bioprocess Technol 9(4): 709–716. https://www.researchgate.net/publication/330779993

  165. Sängerlaub S, Gibis D, Kirchhoff E, Tittjung M, Schmid M, Müller K (2013) Compensation of pinhole defects in food packages by application of iron-based oxygen scavenging multilayer films. Packag Technol Sci 26(1):17–30. https://doi.org/10.1002/pts.1962

    Article  CAS  Google Scholar 

  166. Saltveit ME (1999) Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Technol 15(3):279–292. https://doi.org/10.1016/S0925-5214(98)00091-X

    Article  CAS  Google Scholar 

  167. Sangerlaub S, Böhmer M, Stramm C (2013) Influence of stretching ratio and salt concentration on the porosity of polypropylene films containing sodium chloride particles. J Appl Polym Sci 129(3):1238–1245. https://doi.org/10.1002/app.38793

    Article  CAS  Google Scholar 

  168. Schmid M, Müller P (2019) Intelligent packaging in the food sector: a brief overview. Foods 8(16):1–12. https://doi.org/10.3390/foods8010016

    Article  CAS  Google Scholar 

  169. Schonauer C, Tessitore E, Barbagallo G, Albanese V, Moraci A (2004) The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J 13:89–96. https://doi.org/10.1007/s00586-004-0727-z

    Article  Google Scholar 

  170. Sezer UA, Sanko V, Yuksekdag ZN, Uzundağ D, Sezer S (2016) Use of oxidized regenerated cellulose as bactericidal filler for food packaging applications. Cellulose 23(5):3209–3219. https://doi.org/10.1007/s10570-016-1000-4

    Article  CAS  Google Scholar 

  171. Sharma S, Barkauskaite S, Jaiswal AK, Jaiswal S (2021) Essential oils as additives in active food packaging. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128403

    Article  PubMed  Google Scholar 

  172. Shin Y, Shin J, Lee Y (2009) Effects of oxygen scavenging package on the quality changes of processed meatball product. Food Sci Biotechnol 18(1): 73–80. https://www.researchgate.net/publication/289759904

  173. Silva MF, Lopes PS, Da Silva CF, Yoshida CMP (2016) Active packaging material based on buriti oil - mauritia flexuosa L.f. (Arecaceae) incorporated into chitosan films. J Appl Polym Sci 133(12):1–9. https://doi.org/10.1002/app.43210

    Article  CAS  Google Scholar 

  174. Silva NHCS, Vilela C, Almeida A, Marrucho IM, Freire CSR (2018) Pullulan-based nanocomposite films for functional food packaging: exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. Food Hydrocolloids 77:921–930. https://doi.org/10.1016/j.foodhyd.2017.11.039

    Article  CAS  Google Scholar 

  175. Singh AK, Kim JY, Lee YS (2022) Phenolic compounds in active packaging and edible films/coatings: natural bioactive molecules and novel packaging ingredients. Molecules 27:7513. https://doi.org/10.3390/molecules27217513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Singh P, Langowski HC, Wani AA, Saengerlaub S (2010) Recent advances in extending the shelf life of fresh Agaricus mushrooms: a review. J Sci Food Agric 90(9):1393–1402. https://doi.org/10.1002/jsfa.3971

    Article  CAS  PubMed  Google Scholar 

  177. Singh P, Saengerlaub S, Stramm C, Langowski H (2010) Humidity regulating packages containing sodium chloride as active substance for packing of fresh raw Agaricus mushrooms. In: Proceeding of the 4th International Workshop Cold Chain Management, University Bonn, Germany

  178. Sothornvit R, Sampoompuang C (2012) Rice straw paper incorporated with activated carbon as an ethylene scavenger in a paper-making process. Int J Food Sci Technol 47(3):511–517. https://doi.org/10.1111/j.1365-2621.2011.02871.x

    Article  CAS  Google Scholar 

  179. Soysal C, Bozkurt H, Dirican E, Gücļü M, Bozhüyük ED, Uslu AE, Kaya S (2015) Effect of antimicrobial packaging on physicochemical and microbial quality of chicken drumsticks. Food Control 54:294–299. https://doi.org/10.1016/j.foodcont.2015.02.009

    Article  CAS  Google Scholar 

  180. Spricigo PC, Foschini MM, Ribeiro C, Corrêa DS, Ferreira MD (2017) Nanoscaled platforms based on SiO2 and Al2O3 impregnated with potassium permanganate use color changes to indicate ethylene removal. Food Bioprocess Technol 10(9):1622–1630. https://doi.org/10.1007/s11947-017-1929-9

    Article  CAS  Google Scholar 

  181. Stanley J, John A, Pušnik Črešnar K, Fras Zemljič L, Lambropoulou DA, Bikiaris DN (2023) Active agents incorporated in polymeric substrates to enhance antibacterial and antioxidant properties in food packaging applications. Macromol 3:1–27. https://doi.org/10.3390/macromol301000

    Article  CAS  Google Scholar 

  182. Suppakul P (2015) Active and intelligent packaging. In: Alavi S, Thomas S, Sandeep KP, Kalarikkal N, Varghese J, Yaragalla S (eds) Polymers for packaging applications. Apple Academic Press, Toronto

    Google Scholar 

  183. Suvarna V, Nair A, Mallya R, Khan T, Omri A (2022) Antimicrobial nanomaterials for food packaging. Antibiotics (Basel) 11(6):729. https://doi.org/10.3390/antibiotics11060729

    Article  CAS  PubMed  Google Scholar 

  184. Taboada-Rodríguez A, García-García I, Cava-Roda R, López-Gómez A, Marín-Iniesta F (2013) Hydrophobic properties of cardboard coated with polylactic acid and ethylene scavengers. J Coat Technol Res 10(5):749–755. https://doi.org/10.1007/s11998-013-9493-3

    Article  CAS  Google Scholar 

  185. Tas CE, Hendessi S, Baysal M, Unal S, Cebeci FC, Menceloglu YZ (2017) Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties. Food Bioprocess Technol 10(4):789–798. https://doi.org/10.1007/s11947-017-1860-0

    Article  CAS  Google Scholar 

  186. Torres-Arreola W, Soto-Valdez H, Peralta E, Cárdenas-López JL, Ezquerra-Brauer JM (2007) Effect of a low-density polyethylene film containing butylated hydroxytoluene on lipid oxidation and protein quality of Sierra fish (Scomberomorus sierra) muscle during frozen storage. J Agric Food Chem 55(15):6140–6146. https://doi.org/10.1021/jf070418h

    Article  CAS  PubMed  Google Scholar 

  187. Trindade MA, Villanueva NDM, Antunes CV, Freire MTDA (2013) Active packaged lamb with oxygen scavenger/carbon dioxide emitter sachet: physical-chemical and microbiological stability during refrigerated storage. Braz J Food Technol 16:216–225. https://doi.org/10.1590/S1981-67232013005000027

    Article  CAS  Google Scholar 

  188. Tulsyan G, Richter C, Diaz CA (2017) Oxygen scavengers based on titanium oxide nanotubes for packaging applications. Packag Technol Sci 30:251–256. https://doi.org/10.1002/pts.2296

    Article  CAS  Google Scholar 

  189. Van Bree I, Baetens JM, Samapundo S, Devlieghere F, Laleman R, Vandekinderen I, Noseda B, Xhaferi R, De Baets B, De Meulenaer B (2012) Modelling the degradation kinetics of vitamin C in fruit juice in relation to the initial headspace oxygen concentration. Food Chem 134(1):207–214. https://doi.org/10.1016/j.foodchem.2012.02.096

    Article  CAS  Google Scholar 

  190. Vasuki MT, Kadirvel V, Narayana GP (2023) Smart packaging—an overview of concepts and applications in various food industries. Food Bioeng 2:25–41. https://doi.org/10.1002/fbe2.12038

    Article  Google Scholar 

  191. Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC, Nilsen-Nygaard J, Pettersen MK, Freire CSR (2018) A concise guide to active agents for active food packaging. Trends Food Sci Technol 80:212–222. https://doi.org/10.1016/j.tifs.2018.08.006

    Article  CAS  Google Scholar 

  192. Vilela C, Pinto RJB, Coelho J, Domingues MRM, Daina S, Sadocco P (2017) Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocolloids 73:120–128. https://doi.org/10.1016/j.foodhyd.2017.06.037

    Article  CAS  Google Scholar 

  193. Villa CC, Valencia GA, Córdoba AL, Ortega-Toro R, Ahmed S, Gutiérrez TJ (2022) Zeolites for food applications: a review. Food Biosci. https://doi.org/10.1016/j.fbio.2022.101577

    Article  Google Scholar 

  194. Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66(2):395–413. https://doi.org/10.1021/acs.jafc.7b04528

    Article  CAS  PubMed  Google Scholar 

  195. Wang K, Jin P, Shang H, Li H, Xu F, Hu Q, Zheng Y (2010) A combination of hot air treatment and nano-packing reduces fruit decay and maintains quality in postharvest Chinese bayberries. J Sci Food Agric 90(14):2427–2432. https://doi.org/10.1002/jsfa.4102

    Article  CAS  PubMed  Google Scholar 

  196. Wrona M, Cran MJ, Nerín C, Bigger SW (2017) Development and characterization of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohyd Polym 156:108–117. https://doi.org/10.1016/j.carbpol.2016.08.094

    Article  CAS  Google Scholar 

  197. Wu CS, Liao JY, Fang SY, Chiang AST (2010) Flexible and transparent moisture getter film containing zeolite. Adsorption 16(1):69–74. https://doi.org/10.1007/s10450-009-9196-3

    Article  CAS  Google Scholar 

  198. Wyrwa J, Barska A (2017) Innovations in the food packaging market: active packaging. Eur Food Res Technol 243(10):1681–1692. https://doi.org/10.1007/s00217-017-2878-2

    Article  CAS  Google Scholar 

  199. Yadav N, Kaur R (2019) Environment friendly qualitatively responsive ethyl cellulose films as smart food packaging. Mater Express 9(7):792–800. https://doi.org/10.1166/mex.2019.1559

    Article  CAS  Google Scholar 

  200. Yan MR, Hsieh S, Ricacho N (2022) Innovative food packaging, food quality and safety, and consumer perspectives. Processes 10(4):747. https://doi.org/10.3390/pr10040747

    Article  CAS  Google Scholar 

  201. Yang FM, Li HM, Li F, Xin ZH, Zhao LY, Zheng YH, Hu QH (2010) Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. Fengxiang) during storage at 4 °C. J Food Sci 75(3):C236–C240. https://doi.org/10.1111/j.1750-3841.2010.01520.x

    Article  CAS  PubMed  Google Scholar 

  202. Ye M, Neetoo H, Chen H (2008) Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. Int J Food Microbiol 127(3):235–240. https://doi.org/10.1016/j.ijfoodmicro.2008.07.012

    Article  CAS  PubMed  Google Scholar 

  203. Ye Mu, Neetoo H, Chen H (2008) Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiol 25(2):260–268. https://doi.org/10.1016/j.fm.2007.10.014

    Article  CAS  PubMed  Google Scholar 

  204. Yildirim S, Röcker B, Rüegg N, Lohwasser W (2015) Development of palladium-based oxygen scavenger: optimization of substrate and palladium layer thickness. Packag Technol Sci 28(8):710–718. https://doi.org/10.1002/pts.2134

    Article  CAS  Google Scholar 

  205. Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17(1):165–199. https://doi.org/10.1111/1541-4337.12322

    Article  PubMed  Google Scholar 

  206. Yildirim S, Rüegg N, Hutter S (2016) Use of palladium-based oxygen scavenger to prevent discoloration of ham. Food Packag Shelf Life 8:56–62. https://doi.org/10.1016/j.fpsl.2016.02.004

    Article  CAS  Google Scholar 

  207. Younis K, Ashfaq A, Khursheed N, Fatima S, Anjum Z (2022) Application of nanotechnology in food packaging: Pros and Cons. J Agric Food Res. https://doi.org/10.1016/j.jafr.2022.100270

    Article  Google Scholar 

  208. Youssef AM, Sayed SM, Sayed HS, Salama HH, Dufresne A (2016) Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohyd Polym 151(19):9–19. https://doi.org/10.1016/j.carbpol.2016.05.023

    Article  CAS  Google Scholar 

  209. Zerdin K, Rooney ML, Vermuë J (2003) The vitamin C content of orange juice packed in an oxygen scavenger material. Food Chem 82(3):387–395. https://doi.org/10.1016/S0308-8146(02)00559-9

    Article  CAS  Google Scholar 

  210. Zhang L, Li K, Yu D, Regenstein JM, Dong J, Chen W, Xia W (2022) Chitosan/zein bilayer films with one-way water barrier characteristic: Physical, structural and thermal properties. Int J Biol Macromol 200:378–387. https://doi.org/10.1016/j.ijbiomac.2021.12.199

    Article  CAS  PubMed  Google Scholar 

  211. Zhang L, Yu D, Regenstein JM, Xia W, Dong J (2021) A comprehensive review on natural bioactive films with controlled release characteristics and their applications in foods and pharmaceuticals. Trends Food Sci Technol 112:690–707. https://doi.org/10.1016/j.tifs.2021.03.053

    Article  CAS  Google Scholar 

  212. Zhu Z, Zhang YB, Shang YL, Wen YQ (2019) Electrospun nanofibers containing TiO2 for the photocatalytic degradation of ethylene and delaying postharvest ripening of bananas. Food Bioprocess Technol 12:281–287. https://doi.org/10.1007/s11947-018-2207-1

    Article  CAS  Google Scholar 

  213. Zhuang H, Barth MM, Cisneros-Zevallos L (2014) Modified atmosphere packaging for fresh fruits and vegetables. In: Han JH (ed) Innovations in food packaging, 2nd edn. Academic Press, San Diego

    Google Scholar 

  214. Zinoviadou KG, Koutsoumanis KP, Biliaderis CG (2010) Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids 24(1):49–59. https://doi.org/10.1016/j.foodhyd.2009.08.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Delhi Technological University for providing us necessary facilities to conduct these studies.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raminder Kaur.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Kaur, R. Innovations in Packaging to Monitor and Maintain the Quality of the Food Products. J Package Technol Res 8, 15–50 (2024). https://doi.org/10.1007/s41783-024-00163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41783-024-00163-4

Keywords

Navigation