Skip to main content
Log in

Nanoscaled Platforms Based on SiO2 and Al2O3 Impregnated with Potassium Permanganate Use Color Changes to Indicate Ethylene Removal

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The development of novel tools/devices to monitor and oxidize ethylene (C2H4), a volatile compound responsible for the ripening and senescence in plants, can be a potential approach to maintain and provide information on the postharvest quality of fruits and vegetables. Here, we propose nanoscaled platforms based on silica (SiO2) and alumina (Al2O3) nanoparticles impregnated with potassium permanganate (KMnO4) that use color changes to indicate ethylene removal. SiO2 and Al2O3 in the microscale and nanoscale were impregnated with varied concentrations of KMnO4 through a simple mixture route, which systems were capable of oxidizing the ethylene in a closed atmosphere under relative humidity of 45, 60, 75, and 90%. Ethylene removal and color changes were monitored using gas chromatography and colorimetry, respectively. The nanoscaled platforms impregnated with KMnO4 were capable of scavenging ethylene more efficiently for 1-h exposure. Additionally, the color changes experienced by the nanoscaled platforms, arising from the chemical reduction of potassium permanganate, function as an indicator of ethylene removal, which is particularly suitable for postharvest application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abeles, F. B., Morgan, P. W., & Saltveit, M. E. (1992). Ethylene in plant biology. Ethylene in Plant Biology. Elsevier. doi:10.1016/B978-0-08-091628-6.50004-7

  • Ansari, M., & Tuteja, N. (2015). Post-harvest quality risks by stress/ethylene: management to mitigate. Protoplasma, 252(1), 21–32. doi:10.1007/s00709-014-0678-0.

    Article  CAS  Google Scholar 

  • Blanke, M. M. (2014). Reducing ethylene levels along the food supply chain: a key to reducing food waste? Journal of the Science of Food and Agriculture, 94(12), 2357–2361. doi:10.1002/jsfa.6660.

    Article  CAS  Google Scholar 

  • Bleecker, A. B., & Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology, 16, 1–18. doi:10.1146/annurev.cellbio.16.1.1.

    Article  CAS  Google Scholar 

  • Cabanillas-Galán, P., Farmer, L., Hagan, T., Nieuwenhuyzen, M., James, S. L., & Lagunas, M. C. (2008). A new approach for the detection of ethylene using silica-supported palladium complexes. Inorganic Chemistry, 47(19), 9035–9041.

    Article  Google Scholar 

  • Camargos, J. A. A., & Gonçalez, J. C. (2001). A colorimetria aplicada como instrumento na elaboração de uma tabela de cores de madeira. Brasil Florestal, 20, 30–41.

    Google Scholar 

  • Cappellin, L., Makhoul, S., Schuhfried, E., Romano, A., Sanchez Del Pulgar, J., Aprea, E., et al. (2014). Ethylene: absolute real-time high-sensitivity detection with PTR/SRI-MS. The example of fruits, leaves and bacteria. International Journal of Mass Spectrometry, 365–366, 33–41. doi:10.1016/j.ijms.2013.12.004.

    Article  Google Scholar 

  • CIE. (2004). Colorimetry Vienna: CIE Publication Number 15:2004. International Commission of Illumination.

  • Dash, S., Patel, S., & Mishra, B. K. (2009). Oxidation by permanganate: synthetic and mechanistic aspects. Tetrahedron, 65(4), 707–739. doi:10.1016/j.tet.2008.10.038.

    Article  CAS  Google Scholar 

  • DeEll, J. R., Toivonen, P. M. A., Cornut, F., Roger, C., & Vigneault, C. (2006). Addition of sorbitol with KMnO4 improves broccoli quality retention in modified atmosphere packages. Journal of Food Quality, 29(1), 65–75. doi:10.1111/j.1745-4557.2006.00056.x.

    Article  CAS  Google Scholar 

  • Ferrari, S. L. P., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31(7), 799–815. doi:10.1080/0266476042000214501.

    Article  Google Scholar 

  • Florkowski, W. J., Shewfelt, R. L., & Brueckner, B. (2009). Challenges in postharvest handling. Postharvest handling (second edi.). Elsevier Inc. doi:10.1016/B978-0-12-374112-7.00022-6.

  • Gromping, U. (2006). Relative importance for linear regression in R: the package relaimpo. Journal of Statistical Software, 17(1), 27.

    Article  Google Scholar 

  • Horsham, M. A., Murphy, J. K. G., & Santangelo, R. A. (2004). Absorbent material for use in humid conditions. Australia: WO 2004/076545 A1.

  • Hu, X. G., Li, X., Park, S. H., Kim, Y.-H., & Yang, S. I. (2016). Nondestructive monitoring of kiwi ripening process using colorimetric ethylene sensor. Bulletin of the Korean Chemical Society, 37(5), 759–762. doi:10.1002/bkcs.10745.

    Article  CAS  Google Scholar 

  • Kader, A. (2002). Postharvest technology of horticultural crops. (A. Kader, Ed.) (3rd Editio.). UC Davis.

  • Katoch, M., Singh, G., Sharma, S., Gupta, N., Sangwan, P. L., & Saxena, A. K. (2014). Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae). BMC complementary and alternative medicine, 14, 52. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3930298&tool=pmcentrez&rendertype=abstract

  • Keller, N., Ducamp, M. N., Robert, D., & Keller, V. (2013). Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chemical Reviews, 113, 5029–5070. doi:10.1021/cr900398v.

    CAS  Google Scholar 

  • Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to bivariate and multivariate analysis. (Foresman, Ed.). Scott: Glenview, IL.

  • Mallakpour, S., & Khadem, E. (2015). Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Progress in Polymer Science. doi:10.1016/j.progpolymsci.2015.07.004

  • Mortazavi, S. M. H., Arzani, K., & Barzegar, M. (2007). Effect of vacuum and modified atmosphere packaging on the postharvest quality and shelf life of date fruits in Khalal stage. In Acta Horticulturae (Vol. 736, pp. 471–477). doi:10.17660/ActaHortic.2007.736.45

  • Pranamornkith, T., East, A., & Heyes, J. (2012). Influence of exogenous ethylene during refrigerated storage on storability and quality of Actinidia chinensis (cv. Hort16A). Postharvest Biology and Technology, 64(1), 1–8. doi:10.1016/j.postharvbio.2011.09.011.

    Article  CAS  Google Scholar 

  • Salveit, M. E., & Junior, D. R. (1977). Simple procedure for preparing dilute concentrations of ethylene in air or oxygen in high pressure cylinders. Hortscience, 12(3), 252–253.

    Google Scholar 

  • Sardabi, F., Mohtadinia, J., Shavakhi, F., & Jafari, A. A. (2014). The effects of 1-methylcyclopropen (1-MCP) and potassium permanganate coated zeolite nanoparticles on shelf life extension and quality loss of golden delicious apples. Journal of Food Processing and Preservation, 38(6), 2176–2182. doi:10.1111/jfpp.12197.

    Article  CAS  Google Scholar 

  • Sharma, G., & Bala, R. (2002). Digital color imaging handbook. CRC Press.

  • Sharma, G., Wu, W., & Dalal, E. (2005). The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Research and Application, 30(1), 21–30. doi:10.1002/col.20070.

    Article  Google Scholar 

  • Wills, R. B. H., Harris, D. R., Spohr, L. J., & Golding, J. B. (2014). Reduction of energy usage during storage and transport of bananas by management of exogenous ethylene levels. Postharvest Biology and Technology, 89, 7–10. doi:10.1016/j.postharvbio.2013.11.002.

    Article  CAS  Google Scholar 

  • Wills, R. B. H., & Warton, M. A. (2004). Efficacy of potassium permanganate impregnated into alumina beads to reduce atmospheric ethylene. J. Amer. Soc. Hort. Sci., 129(3), 433–438 http://journal.ashspublications.org/content/129/3/433.abstract.

    CAS  Google Scholar 

  • Yam, K. L., & Lee, D. S. (2012). Emerging food packaging technologies: principles and practice. Elsevier Science. https://books.google.com.br/books?id=xS1mAgAAQBAJ

  • Zagory, D. (1995). Ethylene-removing packaging. In M. L. Rooney (Ed.), Active Food Packaging (pp. 38–54). London: Blackie Academic and Professional.

Download references

Acknowledgements

The authors thank the financial support provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant Number 2014/16789-5), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes—Rede Nanobiotec), Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Rede Agronano, and MCTI-SisNano from Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poliana Cristina Spricigo.

Electronic Supplementary Material

ESM 1

(DOCX 52 kb)

ESM 2

(DOCX 53 kb)

ESM 3

(DOCX 50 kb)

ESM 4

(DOCX 47 kb)

ESM 5

(DOCX 14 kb)

ESM 6

(DOCX 14 kb)

ESM 7

(DOCX 14 kb)

ESM 8

(DOCX 14 kb)

ESM 9

(DOCX 19 kb)

ESM 10

(DOCX 19 kb)

ESM 11

(DOCX 19 kb)

ESM 12

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spricigo, P.C., Foschini, M.M., Ribeiro, C. et al. Nanoscaled Platforms Based on SiO2 and Al2O3 Impregnated with Potassium Permanganate Use Color Changes to Indicate Ethylene Removal. Food Bioprocess Technol 10, 1622–1630 (2017). https://doi.org/10.1007/s11947-017-1929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1929-9

Keywords

Navigation