Skip to main content
Log in

Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The study aimed to develop a nanofiber film for photocatalytic degradation of ethylene and slowing down the ripening of banana fruit. Nanofibers containing different amounts of TiO2 nanoparticles (1 wt%, 5 wt%, and 10 wt%) were prepared using electrospinning method. Nanofibers containing 5 wt% TiO2 exhibited a nano-scale structure, good nanoparticle uniformity, and an anatase phase as characterized by scanning electron microscopy, energy dispersive X-ray spectrometer, transmission electron microscopy, and X-ray diffraction. Nanofibers containing 5 wt% TiO2 were tested in a photocatalytic reactor and showed higher photocatalytic activity for the degradation of ethylene. The utility of the photocatalytic reaction was further confirmed via a banana fruit-ripening test. The TiO2 nanofiber successfully delayed the color change and softening of bananas during storage. The results suggest that the TiO2 nanofiber offers photocatalytic degradation of ethylene and could potentially be used as packaging material for delaying postharvest fruit ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039–2055.

    Article  CAS  Google Scholar 

  • Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 233, 117–124.

    Article  CAS  Google Scholar 

  • Chang, K. L., Sekiguchi, K., Wang, Q., & Zhao, F. (2013). Removal of ethylene and secondary organic aerosols using UV-C254 with TiO2 catalyst. Aerosol and Air Quality Research, 13(2), 618–626.

    Article  CAS  Google Scholar 

  • de Chiara, M. L. V., Pal, S., Licciulli, A., Amodio, M. L., & Colelli, G. (2015). Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: Effects on the ripening of mature green tomatoes. Biosystems Engineering, 132, 61–70.

    Article  Google Scholar 

  • Hoseinnejad, M., Jafari, S. M., & Katouzian, I. (2018). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2), 161–181.

    Article  CAS  Google Scholar 

  • Hussain, M., Bensaid, S., Geobaldo, F., Saracco, G., & Russo, N. (2011). Photocatalytic degradation of ethylene emitted by fruits with TiO2 nanoparticles. Industrial & Engineering Chemistry Research, 50(5), 2536–2543.

    Article  CAS  Google Scholar 

  • Im, J. S., Kim, M. I., & Lee, Y. (2008). Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Materials Letters, 62(21–22), 3652–3655.

    Article  CAS  Google Scholar 

  • Keller, N., Ducamp, M. N., Robert, D., & Keller, V. (2013). Ethylene removal and fresh product storage: A challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chemical Reviews, 113(7), 5029–5070.

    Article  CAS  Google Scholar 

  • Korehei, R., & Kadla, J. F. (2014). Encapsulation of T4 bacteriophage in electrospun poly (ethylene oxide)/cellulose diacetate fibers. Carbohydrate Polymers, 100, 150–157.

    Article  CAS  Google Scholar 

  • Kriegel, C., Arrechi, A., Kit, K., McClements, D. J., & Weiss, J. (2008). Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Critical Reviews in Food Science and Nutrition, 48(8), 775–797.

    Article  CAS  Google Scholar 

  • Lazar, M. A., Varghese, S., & Nair, S. S. (2012). Photocatalytic water treatment by titanium dioxide: Recent updates. Catalysts, 2(4), 572–601.

    Article  CAS  Google Scholar 

  • Liu, Y. W., Wang, S. Y., & Lan, W. T. (2017). Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. International Journal of Biological Macromolecules, 107, 848–854.

    Article  Google Scholar 

  • Maneerat, C., & Hayata, Y. (2006). Efficiency of TiO2 photocatalytic reaction on delay of fruit ripening and removal of off-flavors from the fruit storage atmosphere. Transactions of the ASAE, 49(3), 833–837.

    Article  CAS  Google Scholar 

  • Maneerat, C., Hayata, Y., Egashira, N., Sakamoto, K., Hamai, Z., & Kuroyanagi, M. (2003). Photocatalytic reaction of TiO2 to decompose ethylene in fruit and vegetables storage. Transactions of the ASAE, 46(3), 725–730.

    Article  CAS  Google Scholar 

  • Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 43(14), 2229–2246.

    Article  CAS  Google Scholar 

  • Nakata, K., Ochiai, T., Murakami, T., & Fujishima, A. (2012). Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta, 84, 103–111.

    Article  CAS  Google Scholar 

  • Pant, H. R., Bajgai, M. P., Nam, K. T., Seo, Y. A., Pandeya, D. R., Hong, S. T., et al. (2011). Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: A multifunctional nanocomposite textile material. Journal of Hazardous Materials, 185(1), 124–130.

    Article  CAS  Google Scholar 

  • Pathak, N., Caleb, O. J., Geyer, M., Herppich, W. B., Rauh, C., & Mahajan, P. V. (2017). Photocatalytic and photochemical oxidation of ethylene: Potential for storage of fresh produce—A review. Food and Bioprocess Technology, 10(6), 982–1001.

    Article  CAS  Google Scholar 

  • Razmjou, A., Mansouri, J., & Chen, V. (2011). The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. Journal of Membrane Science, 378(1–2), 73–84.

    Article  CAS  Google Scholar 

  • Scariot, V., Paradiso, R., Rogers, H., & De Pascale, S. (2014). Ethylene control in cut flowers: Classical and innovative approaches. Postharvest Biology and Technology, 97, 83–92.

    Article  CAS  Google Scholar 

  • Tanaka, K., Fukuyoshi, J., Segawa, H., & Yoshida, K. (2006). Improved photocatalytic activity of zeolite- and silica-incorporated TiO2 film. Journal of Hazardous Materials, 137(2), 947–951.

    Article  CAS  Google Scholar 

  • Tas, C. E., Hendessi, S., Baysal, M., Unal, S., Cebeci, F. C., Menceloglu, Y. Z., et al. (2017). Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties. Food and Bioprocess Technology, 10(4), 789–798.

    Article  CAS  Google Scholar 

  • Tytgat, T., Hauchecorne, B., Abakumov, A. M., Smits, M., Verbruggen, S. W., & Lenaerts, S. (2012). Photocatalytic process optimisation for ethylene oxidation. Chemical Engineering Journal, 209, 494–500.

    Article  CAS  Google Scholar 

  • Verbruggen, S. W., Ribbens, S., Tytgat, T., Hauchecorne, B., Smits, M., Meynen, V., et al. (2011). The benefit of glass bead supports for efficient gas phase photocatalysis: Case study of a commercial and a synthesised photocatalyst. Chemical Engineering Journal, 174(1), 318–325.

    Article  CAS  Google Scholar 

  • Watkins, C. B. (2006). The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances, 24(4), 389–409.

    Article  CAS  Google Scholar 

  • Yamazaki, S., Tanaka, S., & Tsukamoto, H. (1999). Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 121(1), 55–61.

    Article  CAS  Google Scholar 

  • Zhang, J. F., Zhou, P., Liu, J. J., & Yu, J. G. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 16, 20382–20386.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by National Key Research and Development Program of China (2018YFD0401302), Beijing Natural Science Foundation (2172039), and the Fundamental Research Funds for the Central Universities (FRF-BR-17-033A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanli Shang or Yongqiang Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhang, Y., Shang, Y. et al. Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas. Food Bioprocess Technol 12, 281–287 (2019). https://doi.org/10.1007/s11947-018-2207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2207-1

Keywords

Navigation