Skip to main content
Log in

The combination of electrophoretic deposition and seed-mediated growth as an effective preparation procedure of FTO/AuNPs electrodes for arsenic(III) measurement

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Inorganic arsenic is very toxic but is widely distributed in the environment. Recently, anodic stripping voltammetry method has been developed for the determination of trace inorganic arsenic. In this research, gold nanoparticles coated on fluorine-doped tin oxide glass (FTO/AuNPs) electrodes were successfully fabricated via the combination of electrophoretic deposition and seed-mediated growth and were utilized as an electrode for the detection of arsenic(III). First, FTO/AuNPs electrodes were prepared by varying the potential (1–5 V) and the time (30–180 min) of electrophoretic deposition process. Electrochemical analysis of FTO/AuNPs electrodes was proceeded by cyclic voltammetric measurement in electrolyte solutions containing 0.005 M HQ and 0.1 M NaClO4, showing the optimized electrophoretic potential and time to be 3 V and 90 min. The best-performed FTO/AuNPs electrode after electrophoretic deposition was immersed in different seed-mediated growth solutions, which exhibited an increase in both nanoparticle size and electrochemical activity. Finally, the fabricated FTO/AuNPs electrodes were utilized for arsenic(III) analysis by anodic stripping voltammetry–square wave voltammetry method which showed high sensitivity, as limit of detection value of 3.76 ppb and limit of quantification value of 11.6 ppb could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Smedley, P.L., Kinniburgh, D.G.: A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002)

    CAS  Google Scholar 

  2. Luong, J.H.T., Lam, E., Male, K.B.: Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal. Methods 6, 6157–6169 (2014)

    CAS  Google Scholar 

  3. World Health Organization, Guidelines for drinking-water quality [electronic resource], 3rd edition incorporating 1st and 2nd addenda. Vol.1, Recommendations. 3rd ed.; World Health Organization: Geneva, 145–196 (2008)

  4. Wu, Y., Liu, L., Zhan, S., Wang, F., Zhou, P.: Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst 137, 4171–4178 (2012)

    CAS  Google Scholar 

  5. Sitko, R., Janik, P., Zawisza, B., Talik, E., Margui, E., Queralt, I.: Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal Chem 87, 3535–3542 (2015)

    CAS  Google Scholar 

  6. Kumaresan, M., Riyazuddin, P.: Overview of speciation chemistry of arsenic. Curr. Sci. 80, 837–846 (2001)

    CAS  Google Scholar 

  7. Gong, Z.: Arsenic speciation analysis. Talanta 58, 77–96 (2002)

    CAS  Google Scholar 

  8. Saha, S., Sarkar, P.: Differential pulse anodic stripping voltammetry for detection of As (III) by Chitosan-Fe(OH)3 modified glassy carbon electrode: a new approach towards speciation of arsenic. Talanta 158, 235–245 (2016)

    CAS  Google Scholar 

  9. Dash, S., Munichandraiah, N.: Electroanalysis of As(III) at nanodendritic Pd on PEDOT. Analyst 139, 1789–1795 (2014)

    CAS  Google Scholar 

  10. Du, Y., Zhao, W., Xu, J.J., Chen, H.Y.: Electrochemical determination of arsenite in neutral media on reusable gold nanostructured films. Talanta 79, 243–248 (2009)

    CAS  Google Scholar 

  11. Xu, H., Zeng, L., Xing, S., Shi, G., Chen, J., Xian, Y., Jin, L.: Highly ordered platinum-nanotube arrays for oxidative determination of trace arsenic(III). Electrochem. Commun. 10, 1893–1896 (2008)

    CAS  Google Scholar 

  12. Du, Y., Sun, C., Shen, Y., Liu, L., Chen, M., Xie, Q., Xiao, H.: Anodic stripping voltammetric analysis of trace arsenic(III) on a Au-stained Au nanoparticles/pyridine/carboxylated multiwalled carbon nanotubes/glassy carbon electrode. Nanomaterials (Basel) 12, 1450 (2022)

  13. Zhao, G., Wang, H., Liu, G., Wang, Z.: Optimization of stripping voltammetric sensor by a back propagation artificial neural network for the accurate determination of Pb(II) in the presence of Cd(II). Sensors (Basel) 16, 1540 (2016)

  14. Liu, Z.-G., Huang, X.-J.: Voltammetric determination of inorganic arsenic. Trends Anal. Chem. 60, 25–35 (2014)

    CAS  Google Scholar 

  15. Wang, C., Yu, C.: Detection of chemical pollutants in water using gold nanoparticles as sensors: a review. Rev. Anal. Chem. 32, 1–14 (2013)

    Google Scholar 

  16. Chatchai, P., Kishioka, S.-Y., Murakami, Y., Nosaka, A.Y., Nosaka, Y.: Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation. Electrochim. Acta 55, 592–596 (2010)

    CAS  Google Scholar 

  17. Vahdatkhah, P., Sadrnezhaad, S.K.: Pulsed electrodeposition of gold nanoparticles on fluorine-doped tin oxide glass and absorption-based surface plasmon resonance evaluation. Journal of Nano Research 33, 11–26 (2015)

    CAS  Google Scholar 

  18. Ballarin, B., Cassani, M.C., Maccato, C., Gasparotto, A.: RF-sputtering preparation of gold-nanoparticle-modified ITO electrodes for electrocatalytic applications. Nanotechnology 22, 275711 (2011)

    CAS  Google Scholar 

  19. Sakai, N., Fujiwara, Y., Arai, M., Yu, K., Tatsuma, T.: Electrodeposition of gold nanoparticles on ITO: control of morphology and plasmon resonance-based absorption and scattering. J. Electroanal. Chem. 628, 7–15 (2009)

    CAS  Google Scholar 

  20. Dai, X., Compton, R.G.: Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III). Anal Sci 22, 567–570 (2006)

    CAS  Google Scholar 

  21. Tang, Y.-Y., Chen, P.-Y.: Gold nanoparticle-electrodeposited electrodes used for p-nitrophenol detection in acidic media: effect of electrodeposition parameters on particle density, size distribution, and electrode performance. J. Chin. Chem. Soc. 58, 723–731 (2011)

    CAS  Google Scholar 

  22. Cantale, V., Simeone, F.C., Gambari, R., Rampi, M.A.: Gold nano-islands on FTO as plasmonic nanostructures for biosensors. Sens. Actuators, B Chem. 152, 206–213 (2011)

    CAS  Google Scholar 

  23. Allen, S.L., Zamborini, F.P.: Size-selective electrophoretic deposition of gold nanoparticles mediated by hydroquinone oxidation. Langmuir 35, 2137–2145 (2019)

    CAS  Google Scholar 

  24. Perrault, S.D., Chan, W.C.: Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131, 17042–17043 (2009)

    CAS  Google Scholar 

  25. Zhao, P., Li, N., Astruc, D.: State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638–665 (2013)

    CAS  Google Scholar 

  26. Choi, S., Moon, Y., Yoo, H.: Finely tunable fabrication and catalytic activity of gold multipod nanoparticles. J Colloid Interface Sci 469, 269–276 (2016)

    CAS  Google Scholar 

  27. Personick, M.L., Langille, M.R., Zhang, J., Mirkin, C.A.: Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett 11, 3394–3398 (2011)

    CAS  Google Scholar 

  28. Wall, M. A., Harmsen, S., Pal, S., Zhang, L., Arianna, G., Lombardi, J. R., Drain, C. M., Kircher, M. F.: Surfactant-free shape control of gold nanoparticles enabled by unified theoretical framework of nanocrystal synthesis. Adv Mater 29, 1605622 (2017)

  29. Phan, T. T. V., Phan, D. T., Cao, X. T., Huynh, T. C., Oh, J.: Roles of chitosan in green synthesis of metal nanoparticles for biomedical applications. Nanomaterials (Basel) 11, 273 (2021)

  30. Taleuzzaman, M.: Limit of Blank (LOB), Limit of detection (LOD), and limit of quantification (LOQ). Org. Med. Chem IJ 7, 555722 (2018)

    Google Scholar 

  31. Shrivastava, A., Gupta, V.: Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists 2, 21–25 (2011)

  32. Sulaiman, G.M., Waheeb, H.M., Jabir, M.S., Khazaal, S.H., Dewir, Y.H., Naidoo, Y.: Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep 10, 9362 (2020)

    CAS  Google Scholar 

  33. Shafiqa, A. R., Abdul Aziz, A., Mehrdel, B.: Nanoparticle optical properties: size dependence of a single gold spherical nanoparticle. Journal of Physics: Conference Series 1083, 012040 (2018)

  34. Haiss, W., Thanh, N.T., Aveyard, J., Fernig, D.G.: Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79, 4215–4221 (2007)

    CAS  Google Scholar 

  35. Félix, L. L., Porcel, J. M., Aragón, F. F. H., Pacheco-Salazar, D. G., Sousa, M. H.: Simple synthesis of gold-decorated silica nanoparticles by in situ precipitation method with new plasmonic properties. SN Applied Sciences 3, 443 (2021)

  36. Ojea-Jiménez, I., Romero, F.M., Bastús, N.G., Puntes, V.: Small gold nanoparticles synthesized with sodium citrate and heavy water: insights into the reaction mechanism. J Phys Chem C 114, 1800–1804 (2010)

    Google Scholar 

  37. Turkevich, J., Stevenson, P. C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 11, 55–75 (1951)

  38. Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Marquez, M., Xia, Y.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35, 1084–1094 (2006)

    CAS  Google Scholar 

  39. Sharma, V., Park, K., Srinivasarao, M.: Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater. Sci. Eng. R. Rep. 65, 1–38 (2009)

    Google Scholar 

  40. Boopathi, S., Senthilkumar, S., Phani, K.L.: Facile and one pot synthesis of gold nanoparticles using tetraphenylborate and polyvinylpyrrolidone for selective colorimetric detection of mercury ions in aqueous medium. J Anal Methods Chem 2012, 348965 (2012)

    Google Scholar 

  41. Kravets, V.G., Kabashin, A.V., Barnes, W.L., Grigorenko, A.N.: Plasmonic surface lattice resonances: a review of properties and applications. Chem Rev 118, 5912–5951 (2018)

    CAS  Google Scholar 

  42. Ureta-Zañartu, M.S., Bustos, P., Diez, M.C., Mora, M.L., Gutiérrez, C.: Electro-oxidation of chlorophenols at a gold electrode. Electrochim. Acta 46, 2545–2551 (2001)

    Google Scholar 

  43. Hosseini, M.G., Momeni, M.M., Faraji, M.: Fabrication of Au-nanoparticle/TiO2-nanotubes electrodes using electrochemical methods and their application for electrocatalytic oxidation of hydroquinone. Electroanalysis 23, 1654–1662 (2011)

    CAS  Google Scholar 

  44. Chen, L., Tang, Y., Wang, K., Liu, C., Luo, S.: Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun. 13, 133–137 (2011)

    CAS  Google Scholar 

  45. Yuan, D., Chen, S., Hu, F., Wang, C., Yuan, R.: Non-enzymatic amperometric sensor of catechol and hydroquinone using Pt-Au-organosilica@chitosan composites modified electrode. Sens. Actuators, B Chem. 168, 193–199 (2012)

    CAS  Google Scholar 

  46. Mays, D.E., Hussam, A.: Voltammetric methods for determination and speciation of inorganic arsenic in the environment–a review. Anal Chim Acta 646, 6–16 (2009)

    CAS  Google Scholar 

  47. Dai, X., Nekrassova, O., Hyde, M.E., Compton, R.G.: Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76, 5924–5929 (2004)

    CAS  Google Scholar 

  48. Zakharova, E.A., Noskova, G.N., Antonova, S.G., Kabakaev, A.S.: Speciation of arsenic(III) and arsenic(V) by manganese-mediated stripping voltammetry at gold microelectrode ensemble in neutral and basic medium. Int. J. Environ. Anal. Chem. 94, 1478–1498 (2014)

    CAS  Google Scholar 

  49. Jiang, J., Holm, N., O’Brien, K.: Improved anodic stripping voltammetric detection of arsenic (III) using nanoporous gold microelectrode. ECS J Solid State Sci Technol 4, S3024–S3029 (2015)

    CAS  Google Scholar 

  50. Jaramillo, D.X.O., Sukeri, A., Saravia, L.P.H., Espinoza-Montero, P.J., Bertotti, M.: Nanoporous gold microelectrode: a novel sensing platform for highly sensitive and selective determination of arsenic (III) using anodic stripping voltammetry. Electroanalysis 29, 2316–2322 (2017)

    CAS  Google Scholar 

  51. Babar, N.U., Joya, K.S., Tayyab, M.A., Ashiq, M.N., Sohail, M.: Highly sensitive and selective detection of arsenic using electrogenerated nanotextured gold assemblage. ACS Omega 4, 13645–13657 (2019)

    CAS  Google Scholar 

  52. Dr. Latimer, George W, Jr. (ed.).: Guidelines for Dietary Supplements and Botanicals. In Dr. George W, Latimer Jr. (ed) Official Methods of Analysis of AOAC INTERNATIONAL, 22 (New York, 2023; online edn, AOAC Publications, 4 Jan. 2023). https://doi.org/10.1093/9780197610145.005.011. Accessed 3 July 2023

  53. Phal, S., Nguyễn, H., Berisha, A., Tesfalidet, S.: In situ Bi/carboxyphenyl-modified glassy carbon electrode as a sensor platform for detection of Cd2+ and Pb2+ using square wave anodic stripping voltammetry. Sens Bio-Sens Res 34, 100455 (2021)

Download references

Funding

This research is funded by the National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.06–2019.346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thai Hoang Nguyen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.V., Dau, M.T.T., Nguyen, C.M.T. et al. The combination of electrophoretic deposition and seed-mediated growth as an effective preparation procedure of FTO/AuNPs electrodes for arsenic(III) measurement. J Aust Ceram Soc 59, 1177–1188 (2023). https://doi.org/10.1007/s41779-023-00916-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00916-5

Keywords

Navigation