Skip to main content
Log in

A novel auto-combusted synthesis of MFC-800 nanoparticles: an efficient photocatalyst for degradation of industrial pollutant in environmental benign route

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

We have prepared MFC-800 nanoparticles (MnFe2O4 nanoparticles, calcinated at 800 °C) by a novel auto combustion technique for the degradation of TY (titan yellow) dye under the natural source of light and reduction process (aromatic nitro compounds, Ar-NO2 to Ar-NH2) in green circumstances. Different characterization techniques like FT-IR, UV–Vis, XRD, and SEM–EDX have been engaged for the confirmation of the production of MFC-800 nanoparticles. Various parameters were examined for obtaining better results in terms of degradation efficiency (%), like the amount (mg) of MFC-800 nanoparticles, dye concentration (ppm), amount (ml) of TY dye, and pH of TY dye solution. The prepared MFC-800 nanoparticles showed excellent catalytic activity of 94% for TY dye degradation. The MFC-800 nanoparticles in combination with NaBH4 smoothly reduces the 4-NP (4-nitrophenol) to 4-AP (4-aminophenol) in 75 s. Synthesized MFC-800 nanoparticles were easy to recover with the help of an external magnet from the reaction mixture. The developed system is simple and cost-effective, and no additional chemicals were used for the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rauf, M.A., Shehadeh, I., Ahmed, A., Al-Zamly, A.: Removal of Methylene Blue from Aqueous Solution by Using Gypsumas a Low Cost Adsorbent. Int. j. sci. res. 3, 369–374 (2009)

    Google Scholar 

  2. Chen, C.: Photocatalytic degradation of azo dye reactive orange 16 by TiO2. Wat. Air And Soil Poll. 202, 335–342 (2009)

    Article  CAS  Google Scholar 

  3. Habibi, M.H., Hassanzadeh, A., Mahdavi, S.: The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. J. Photochem. Photobiol. 172, 89–96 (2005)

    Article  CAS  Google Scholar 

  4. Pallavicini, C.: Determination of magnesium in tissue by the Titan yellow method in the presence of silver and mercury. Proc. Soc. Exp. Biol. Med. 110, 235–237 (1962)

    Article  CAS  Google Scholar 

  5. Meyrowitz, R.: The direct spectrophotometric microdetermination of high-level magnesium in silicate minerals. a clayton yellow procedure1. Am. Mineral. 49, 769–777 (1964)

    CAS  Google Scholar 

  6. Hong-Wen, G., Peng-Fe, Z.: β-correction spectrophotometric determination of beryllium in waste water with titan yellow. Anal. Proc. Incl. Anal. Commun. 31, 85–87 (1994)

    Article  Google Scholar 

  7. Huang, J., Chang, Q., Din, Y., Han, X., Tang, H.: Catalytic oxidative removal of 2,4- dichlorophenol by simultaneous use of horseradish peroxidase and graphene oxide/Fe3O4 as catalyst. Chem. Eng. J. 254, 434–442 (2014)

    Article  CAS  Google Scholar 

  8. Lampi, P., Hakulinen, T., Luostarinen, T., Pukkala, E., Teppo, L.: Cancer incidence following chlorophenol exposure in a community in southern Finland. Arch. Environ. Health 47, 167–175 (1992)

    Article  CAS  Google Scholar 

  9. Godoy, F., Zenteno, P., Cerda, F., Gonzalez, B., Martinez, M.: Tolerance to trichlorophenols inmicroorganisms from a polluted and a pristine site of a river. Chemosphere 38, 655–662 (1999)

    Article  CAS  Google Scholar 

  10. Pera-Titus, M., Garcya-Molina, V., Banos, M.A., Gimene, J., Esplugas, S.: Degradation of chlorophenols by means of advanced oxidation processes a general review. Appl. Catal. B Environ. 47, 219–256 (2004)

    Article  CAS  Google Scholar 

  11. Sabhi, S., Kiwi, J.: Degradation of 2, 4-dichlorophenol by immobilized iron catalysts. Water Res. 35, 1994–2002 (2001)

    Article  CAS  Google Scholar 

  12. Sohrabi, M.R., Ghavami, M.: Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters. J. Hazard. Mater. 153, 1235–1239 (2008)

    Article  CAS  Google Scholar 

  13. Mahmoodi, N.M., Arami, M., Limaee, N.Y., Tabrizi, N.S.: Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci. 295, 159–164 (2006)

    Article  CAS  Google Scholar 

  14. Mapossa, A.B., Mhike, W., Adalima, J.L., Tichapondwa, S.: Removal of Organic Dyes from Water and Wastewater Using Magnetic Ferrite-Based Titanium Oxide and Zinc Oxide Nanocomposites: A Review. Catal. 11, 1543 (2021)

    CAS  Google Scholar 

  15. Cahino, A.M., Loureiro, R.G., Dantas, J., Madeira, V.S., Fernandes, P.C.R.: Characterization and evaluation of ZnO/CuO catalyst in the degradation of methylene blue using solar radiation. Ceram. Int. 45, 13628–13636 (2019)

    Article  CAS  Google Scholar 

  16. de Oliveira, P.L., Lima, N.S., de Melo Costa, A.C.F., Cavalcanti, E.B., de Sousa Conrado, L.: Obtaining TiO2:CoFe2O4 nanocatalyst by Pechini method for diuron degradation and mineralization. Ceram. Int. 46, 9421–9435 (2020)

    Article  Google Scholar 

  17. Wang, X., Zhang, L.: Kinetic study of hydroxyl radical formation in a continuous hydroxyl generation system. RSC Adv. 8, 40632–40638 (2018)

    Article  CAS  Google Scholar 

  18. Wilson, A., Mishra, S.R., Gupta, R., Ghosh, K.: Preparation and photocatalytic properties of hybrid core-shell reusable CoFe2O4-ZnO nanospheres. J. Magn. Magn. Mater. 324, 2597–2601 (2012)

    Article  CAS  Google Scholar 

  19. Dette, C., Pérez-Osorio, M.A., Kley, C.S., Punke, P., Patrick, C.E., Jacobson, P., Giustino, F., Jung, S.J., Kern, K.: TiO2 anatase with a band gap in the visible region. Nano Lett. 14, 6533–6538 (2014)

    Article  CAS  Google Scholar 

  20. Farhadi, A., Mohammadi, M.R., Ghorbani, M.: On the assessment of photocatalytic activity and charge carrier mechanism of TiO2@SnO2 core-shell nanoparticles for water decontamination. J. Photochem. Photobiol. A Chem. 338, 171–177 (2017)

    Article  CAS  Google Scholar 

  21. Kazemi, M., Mohammadizadeh, M.R.: Simultaneous improvement of photocatalytic and superhydrophilicity properties of nano TiO2 thin films. Chem. Eng. Res. Des. 90, 1473–1479 (2012)

    Article  CAS  Google Scholar 

  22. Ahmed, M.A., El-Katori, E.E., Gharni, Z.H.: Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol-gel method. J. Alloys Compd. 553, 19–29 (2013)

    Article  CAS  Google Scholar 

  23. Harraz, F.A., Mohamed, R.M., Rashad, M.M., Wang, Y.C., Sigmund, W.: Magnetic nanocomposite based on titania–silica/cobaltferrite for photocatalytic degradation of methylene blue dye. Ceram. Int. 40, 375–384 (2014)

    Article  CAS  Google Scholar 

  24. Gong, H., Chu, W.: Determination and toxicity evaluation of the generated products in sulfamethoxazole degradation by UV/CoFe2O4/TiO2. J. Hazard. Mater. 314, 197–203 (2016)

    Article  CAS  Google Scholar 

  25. Dhas, C.R., Venkatesh, R., Jothivenkatachalam, K.: Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceram Int. 41, 9301–9313 (2015)

    Article  Google Scholar 

  26. Dey, D., Kaur, G., Patra, M.: A perfectly linear trinuclear zinc-Schiff base complex: Synthesis, luminescence property and photocatalytic activity of zinc oxide nanoparticle. Inorg Chim Acta. 421, 335–341 (2014)

    Article  CAS  Google Scholar 

  27. Gkizis, P.L., Stratakis, M., Lykakis, I.N.: Calalytic activation of hydrazine hydrate by gold nanoparticles: Chemoselective reduction of nitro compounds into amines. Catal. Commun. 36, 4851 (2013)

    Article  Google Scholar 

  28. Dell’Anna, M.M., Mastrorilli, P., Rizzuti, A., Leonelli, C.: One-pot synthesis of aniline derivatives from nitroarenes under mild conditions promoted by a recyclable polymer-supported palladium catalyst. Appl. Catal. A. 401, 134140 (2011)

    Google Scholar 

  29. Tanaka, A., Fuku, K., Nishi, T., Hashimoto, K., Kominami, H.: Functionalization of Au/TiO2 Plasmonic Photocatalysts with Pd by Formation of a Core Shell Structure for Effective Dechlorination of Chlorobenzene under irradiation of Visible Light. J. Phys. Chem. C. 117, 16983–16989 (2013)

    Article  CAS  Google Scholar 

  30. Feng, J., Su, L., Ma, Y., Ren, C., Guo, Q., Chen, X.: CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol. Chem. Eng. J. 221, 1624 (2013)

    Article  Google Scholar 

  31. Nie, R., Wang, J., Wang, L., Qin, Y., Chen, P., Hou, Z.: Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 50, 586596 (2012)

    Article  Google Scholar 

  32. Shil, A.K., Sharma, D., Guha, N.R., Das, P.: Solid supported Pd (0): an efficient recyclable heterogeneous catalyst for chemoselective reduction of nitroarenes. Tetrahedron Lett. 53, 48584861 (2012)

    Article  Google Scholar 

  33. Li, J., Liu, C.-Y., Liu, Y.: Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 84268430 (2012)

    Google Scholar 

  34. Casbeer, E., Sharma, V.K., Li, X.Z.: Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Puri. Tech. 87, 1–14 (2012)

    Article  CAS  Google Scholar 

  35. Hwang, C.S., Wang, N.C.: Preparation and characteristics of ferrite catalysts for reduction for CO2. Mater. Chem. Phys. 88, 258–263 (2004)

    Article  CAS  Google Scholar 

  36. Papa, F., Patron, L., Carp, O., Paraschiv, C., Loan, B.: Catalytic activity of neodymium substituted zinc ferrites for oxidative conversion of methane. J. Mol. Cata. A: Chem. 299, 93–97 (2009)

    Article  CAS  Google Scholar 

  37. Klimkiewicz, R., Wolska, J., Przepiera, A., Przepiera, K., Jableriski, M., Lenart, S.: The zinc ferrite obtained by the oxidative precipitation method as a catalyst in n-butanol conversion. Mater. Res. Bull. 44, 15–20 (2009)

    Article  CAS  Google Scholar 

  38. Harish, K.N., Naik, H.S.B., Kumar, P.N.P., Viswanath, R.: Synthesis, enhanced optical and photocatalytic study of Cd-Zn ferrites under sun light. Catal. Sci. Technol. 2, 1033–1039 (2012)

    Article  CAS  Google Scholar 

  39. Guo, P., Zhang, G., Yu, J., Li, H., Zhao, X.S.: Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nano crystal clusters of manganese ferrite. Coll. Sur. A: Physico. Engg. Asp. 395, 168–174 (2012)

    Article  CAS  Google Scholar 

  40. Lahiri, P., Sengupta, S.K.: Spinal ferrite as catalysts; A study on catalytic effect of coprecipitated ferrites on hydrogen peroxide decomposition. Can. J. Chem. 69, 33–36 (1991)

    Article  CAS  Google Scholar 

  41. Yavuz, C., Mayo, J., William, W., Prakash, A.: Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Sci. 314, 964–967 (2006)

    Article  Google Scholar 

  42. Palmisano, G., Augugliaro, V., Pagliarob, M., Palmisano, L.: Photocatalysis: a promising route for 21st century organic chemistry. Chem. Commun. 3425–3437 (2007)

  43. Liu, Y., Zhang, N., Yu, C., Jiao, L., Chen, J.: MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries. Nano Lett. 5, 3321–3328 (2016)

    Article  Google Scholar 

  44. Pande, S., Islam, M.M., Mohanta, S.C., Uddin, N.: Single-Step Synthesis of Manganese Ferrite Nanoparticles with Enhanced Magnetization via Chemical Co-precipitation Route. J. Sci Res. 11, 225–234 (2019)

    Article  CAS  Google Scholar 

  45. Patil, R.P., Delekar, S.D., Mane, D.R., Hankare, P.P.: Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. Results Phys. 3, 129–133 (2013)

    Article  Google Scholar 

  46. Mary Jacintha, A., Umapathy, V., Neeraja, P.: Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol-gel method: structural, morphological, optical, magnetic, catalytic and biological activities. J Nanostruct Chem. 7, 375–387 (2017)

    Article  Google Scholar 

  47. Shanmugavela, T., Gokul-Rajb, S., Ramesh-Kumar, G., Rajarajana: Synthesis and Structural Analysis of Nanocrystalline MnFe2O4. Phys. Procedia. 54, 159–163 (2014)

    Article  Google Scholar 

  48. Rouhani, A.R., Esmaeil-Khanian, A.H., Davar, F., Hasani, S.: The effect of agarose content on morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method. Int. J. Appl. Ceram. 15, 758–765 (2018)

    Article  CAS  Google Scholar 

  49. Yuliantika, D., Taufiq, A., Hidayat, A., Sunaryono, Hidayat, N., Soontaranon, S.: Exploring Structural properties of Cobalt Ferrite Nanoparticles from Natural Sand. Mater. Sci. Eng. 515, 012047 (2018)

    Google Scholar 

  50. Bandekar, A.S., Gaikar, P.S., Angre, A.P., Chaughule, A.M., P, N.S.: Effect of Annealing on Microstructure and Magnetic Properties of Mn Ferrite Powder. J. Biol. Chem. Chron. 5, 74–78 (2019)

    Google Scholar 

  51. Soltani, T., Entezari, M.H.: Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J Mol Catal A Chem. 377, 197–203 (2013)

    Article  CAS  Google Scholar 

  52. Gurushankar, K., Theivashanthi, T., Revathy, M.S., Durgadevi: Synthesis and Characterization of MnFe2O4 Nanoparticles and its Electrochemical Performance Evaluated as Anode for Li-ion Battery Applications. IJITEE 9, 2278–3075 (2019)

    Google Scholar 

  53. Jacintha, M., Neeraja, P., Sivakumar, M., Chinnaraj, K.: Comparative Study of MnFe2O4 Nanoparticles Synthesized by Sol-gel Method with Two Different Surfactants. J. Supercond. Nov. Magn. 30, 237–242 (2017)

    Article  CAS  Google Scholar 

  54. Li, X., Hou, Y., Zhao, Q., Wang, L.: A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J. Colloid Interface Sci. 358, 102–108 (2011)

    Article  CAS  Google Scholar 

  55. Zhao, W., Wei, Z., Zhang, X., Ding, M., Huang, S.: PH-controlled MnFe2O4@ SnS2 nanocomposites for the visible-light photo-Fenton degradation. Mater. Res. Bull. 124, 110749 (2020)

    Article  CAS  Google Scholar 

  56. Meena, S., Anantharaju, K.S., Vidya, Y.S.: MnFe2O4/ZrO2 nanocomposite as an efficient magnetically separable photocatalyst with good response to sunlight: preparation, characterization and catalytic mechanism. SN Appl. Sci. 2, 328 (2020)

    Article  CAS  Google Scholar 

  57. He, Z., Shi, Y., Gao, C., Wen, L., Chen, J., Song, S.: BiOCl/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J Phys Chem C. 118, 389396 (2014)

    Google Scholar 

  58. Bahnemann, W., Muneer, M., Haque, M.M.: Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal. Today. 124, 133–148 (2007)

    Article  CAS  Google Scholar 

  59. Toor, A.P., Verma, A., Jotshi, C.K., Bajpai, P.K., Singh, V.: Photocatalytic degradation of direct yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes Pigm. 68, 53–60 (2006)

    Article  CAS  Google Scholar 

  60. Khataee, A.R., Fathinia, M., Aber, S., Zarei, M.: Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite desigm: Intermediates identification. J. Hazaerd. Mater. 181, 886 (2010)

    Article  CAS  Google Scholar 

  61. Mapossa, A.B., Mhike, W., Aber, S., Adalima, J.L., Tichapondwa, S.: Removal of Organic Dyes from Water and Wastewater Using Magnetic Ferrite-Based Titanium Oxide and Zinc Oxide Nanocomposites: A Review

  62. Movahedi, M., Mahjoub, A.R., Janitabar-Darzi, S.: Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO2. J. Iranian. Chem. Soc. 6, 570–577 (2009)

    Article  CAS  Google Scholar 

  63. Singh, H., Rajput, J.K.: Novel perovskite nanocatalyst (BiFeO3) for the photodegradation of rhodamine B/tartrazine and swift reduction of nitro compounds. J. Iran. Chem. Soc. 16, 2409–2432 (2019)

    Article  CAS  Google Scholar 

  64. Jacintha, A.M., Manikandan, A., Chinnaraj, K., Antony, S.A., Neeraja, P.: Comparative Studies of Spinel MnFe2O4 Nanostructures: Structural, Morphological, Optical, Magnetic and Catalytic Properties. J. Nanosci. Nanotechnol. 15, 9732–9740 (2015)

    Article  CAS  Google Scholar 

  65. Shen, Y., Wang, L., Wu, Y., Li, X., Zhao, Q., Hou, Y., Teng, W.: Facile solvothermal synthesis of MnFe2O4 hollow nanospheres and their photocatalytic degradation of benzene investigated by in situ FTIR. Catal. Commun. 68, 11–14 (2015)

    Article  CAS  Google Scholar 

  66. Amighian, J., Mozaffari, M., Nasr, B.: Preparation of nano-sized manganese ferrite (MnFe2O4) via coprecipitation method. Phys. Stat. Sol. 3, 3188–3192 (2006)

    CAS  Google Scholar 

  67. Puspitasari, P., Muhammad, A., Suryanto, H., Andoko: Magnetic Properties of Manganese Ferrite (MnFe2O4) by Co Precipitation Method with Different pH Concentration. High Temp. Mater. Process. 22, 239–248 (2018)

    Article  Google Scholar 

  68. Manohar, A., Krishnamoorthi, C., Pavithra, C., Thota, N.: Magnetic Hyperthermia and Photocatalytic Properties of MnFe2O4 Nanoparticles Synthesized by Solvothermal Reflux Method. J. Supercond. Nov. Magn. 34, 251–259 (2021)

    Article  CAS  Google Scholar 

  69. Yang, L.X., Wang, F., Meng, Y.F., Tang, Q.H., Liu, Z.Q.: Fabrication and Characterization of Manganese FerriteNanospheres as a Magnetic Adsorbent of Chromium. J. Nanomater. 2013, 1–5 (2013)

    Google Scholar 

  70. Jacintha, M., Chinnaraj, K., Neeraja, P., Sivakumar, M.: Comparative Study of MnFe2O4 Nanoparticles Synthesized by Sol-gel Method with Two Different Surfactants. J Supercond Nov Magn. 30 (2017)

  71. Jacintha, M.A., Umapathy, V., Neeraja, P., Rex Jeya Rajkumar, R.: Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol–gel method: structural, morphological, optical, magnetic, catalytic and biological activities. J. Nanostructure. Chem. 7, 375–387 (2017)

  72. Rezaei, M., Mohammad Mirkazemi, S., Alamolhoda, S.: The Role of PVA Surfactant on Magnetic Properties of MnFe2O4 Nanoparticles Synthesized by Sol-Gel Hydrothermal Method. J. Supercond. Nov. Magn. 34, 1397–1408 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Central Instrumental Centre (LPU, Jalandhar) for XRD and the Department of Chemistry, DAV University, Jalandhar, for infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harminder Singh or Ankush Gupta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Singh, H., Gupta, A. et al. A novel auto-combusted synthesis of MFC-800 nanoparticles: an efficient photocatalyst for degradation of industrial pollutant in environmental benign route. J Aust Ceram Soc 59, 533–543 (2023). https://doi.org/10.1007/s41779-023-00848-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00848-0

Keywords

Navigation