Skip to main content
Log in

Chemical strengthening of Li+-containing phosphosilicate glass via a two-step ion-exchange process

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Many studies have been conducted to improve the strength and damage resistance of phosphosilicate glasses via the introduction of Li2O through an appropriate ion-exchange process. However, very limited investigations can unveil the effect of the comprehensive mechanism of two-step ion-exchange process on the mechanical properties of glass. Increasing the amount of Li2O in phosphosilicate glasses increases the hardness and decreases the depth of ion-exchange layers of other alkali ions. With a two-step ion-exchange treatment, the hardness of glass has been enhanced by 28.3% on average. Moreover, the phosphosilicate glass system was found to achieve the maximum compression stress on optimizing the Li2O content for a glass surface after the two-step ion-exchange treatment. The mechanism of strengthening the mechanical properties was then described using atomic packing theory. This investigation will pave the way for efficient composition design for phosphosilicate glasses to meet mechanical performance requirements of various display-related and engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Varshneya, A.K.: Chemical strengthening of glass: lessons learned and yet to be learned. Int. J. Appl. Glas. Sci. 1, 131–142 (2010)

    Article  CAS  Google Scholar 

  2. Gy, R.: Ion exchange for glass strengthening. Mater. Sci. Eng. B. 149, 159–165 (2008)

    Article  CAS  Google Scholar 

  3. Olcott, J.S.: Chemical strengthening of glass. Science. 140, 1189–1193 (1963)

    Article  CAS  Google Scholar 

  4. Bocker, C., Avramov, C.R.: Viscosity and diffusion of barium and fluoride in Na2O/K2O/Al2O3/SiO2/BaF2 glasses. Chem. Phys. 369, 96–100 (2010)

    Article  CAS  Google Scholar 

  5. Maeng, J.H., Kim, D.H., Park, S.M., Kim, H.J.: The effect of chemical treatment on the strength and transmittance of soda-lime cover glass for mobile. Inter. J. Pr. Eng. Man. 15, 1779–1783 (2014)

    Article  Google Scholar 

  6. Guzel, A.S., Sariguzel, M., Yanik, M.C.O., Gunay, E., Usta, M., Ozturk, Y.: Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange. J. Aust. Ceram. Soc. 56, 185–201 (2020)

    Article  CAS  Google Scholar 

  7. Younes, L., Hamidouche, M., Ayadi, K.: Optical and mechanical behavior of glass treated by ion exchange. J. Aust. Ceram. Soc. 56, 309–321 (2020)

    Article  CAS  Google Scholar 

  8. Zhou, S., Jiang, H., Zhou, H.: Effect of Al2O3 content on performance of ion-exchanged strengthening. J. Mater. Sci. Eng. 32, 107–111 (2014)

    Google Scholar 

  9. Zeng, H., Wang, L., Ye, F., Yang, B., Chen, J., Chen, G., Sun, L.: Mechanical-structural investigation of chemical strengthening aluminosilicate glass through introducing phosphorus pentoxide. Front. Mater. 3, 1–7 (2016)

    Article  CAS  Google Scholar 

  10. Mallick, K.K., Holland, D.: Strengthening of container glasses by ion-exchange dip coating. J. Non-Cryst. Solids. 351, 2524–2536 (2005)

    Article  CAS  Google Scholar 

  11. Spirkova, J., Tresenakova-Neboloba, P., Mika, M.: Optical waveguides fabricated by transition element ions exchange in some commercial and special optical glasses. Opt. Mater. 25, 101–107 (2004)

    Article  CAS  Google Scholar 

  12. Tagantsev, D.K., Karapetyan, G.O., Lipovskii, A.A.: Formation of thick glass-ceramics films by ion-exchange. J. Eur. Ceram. Soc. 21, 2015–2018 (2001)

    Article  CAS  Google Scholar 

  13. Calahoo, C., Zwanziger, J.W., Butler, I.S.: Mechanical structural investigation of ion-exchanged lithium silicate glass using micro-Raman spectroscopy. J. Phys. Chem. C. 120, 7213–7232 (2016)

    Article  CAS  Google Scholar 

  14. Hoedemann, S., Valdmann, A., Anton, A.J.: Gradient scattered light method for non-destructive stress profile determination in chemically strengthened glass. J. Mater. Sci. 51, 5962–5978 (2016)

    Article  Google Scholar 

  15. Kuwata, N., Lu, X., Miyazaki, T.: Lithium diffusion coefficient in amorphous lithium phosphate thin films measured by secondary ion mass spectroscopy with isotope exchange methods. Solid State Ionics. 294, 59–66 (2016)

    Article  CAS  Google Scholar 

  16. Aaldenbery, E.M., Lezzi, P.J., Seaman, J.H., Blanchet, T.A., Tomozawa, M.: Ion-exchanged lithium aluminosilicate glass: strength and dynamic fatigue. J. Am. Ceram. Soc. 99, 2645–2654 (2016)

    Article  Google Scholar 

  17. Shen, J.W., Green, D.J., Pantano, C.G.: Control of concentration profiles in two step ion exchanged glasses. Phys. Chem. Glasses. 44, 284–292 (2003)

    CAS  Google Scholar 

  18. Zakeri, B., Sabatyan, A.: Theoretical considerations for anticipating of function analysis on a gradient index-lens fabrication through double ion-exchange process. Appl. Opt. 51, 6290–6294 (2012)

    Article  CAS  Google Scholar 

  19. Zeng, H., Jiang, Q., Liu, Z., Li, X., Ren, J., Chen, G., Liu, F., Peng, S.: Unique sodium phosphosilicate glasses designed through extended topological constraint theory. J. Phys. Chem. B. 118, 5177–5183 (2014)

    Article  CAS  Google Scholar 

  20. Jiang, Q., Zeng, H., Li, X., Ren, J., Chen, G., Liu, F.: Tailoring sodium silicophosphate glasses containing SiO6-octahedra through structural rules and topological principles. J. Chem. Phys. 141, 124506 (2014)

    Article  Google Scholar 

  21. Zeng, H., Jiang, Q., Li, X., Ye, F., Tian, T., Zhang, H., Chen, G.: Anneal-induced enhancement of refractive index and hardness of silicophosphate glasses containing six-fold coordinated silicon. Appl. Phys. Lett. 106, 021903 (2015)

    Article  Google Scholar 

  22. Ji, X., Zeng, H., Li, X., Ye, F., Chen, J., Chen, G.: High glass transition temperature barium silicophosphate glasses designed with topological constraint theory. J. Am. Ceram. Soc. 99, 1255–1258 (2016)

    Article  CAS  Google Scholar 

  23. Wang, L., Zeng, H., Yang, B., Ye, F., Chen, J., Chen, G., Smith, A.T., Sun, L.: Structure-dependent spectroscopic properties of Yb3+-doped phosphosilicate glasses modified by SiO2. Materials. 10(241), (2017)

  24. Zeng, H., Ye, F., Li, X., Jiang, Q., Chen, G., Chen, J., Sun, L.: Elucidating the role of AlO6-octahedra in aluminum silicophosphate glasses through topological constraint theory. J. Am. Ceram. Soc. 100, 1395–1401 (2017)

    Article  CAS  Google Scholar 

  25. Wang, M., Smedskjaer, M.M., Mauro, J.C., Sant, G., Bauchy, M.: Topological origin of the network dilation anomaly in ion-exchanged glasses. Phys. Rev. Appl. 8, 054040 (2017)

    Article  Google Scholar 

  26. John, C.M.: Decoding the glass genome. Curr. Opin. Solid State Mater. Sci. 22, 58–64 (2017)

    Google Scholar 

  27. Li, X., Jiang, L., Zhang, X., Yan, Y.: Influence of residual compressive stress on nanoindentation response of ion-exchanged aluminosilicate float glass on air and tin sides. J. Non-Cryst. Solids. 385, 1–8 (2014)

    Article  CAS  Google Scholar 

  28. Goodman, O., Derby, B.: The mechanical properties of float glass surfaces measured by nanoindentation and acoustic microscopy. Acta Mater. 59, 1790–1799 (2011)

    Article  CAS  Google Scholar 

  29. Howell, J.A., Hellmann, J.R., Muhlstein, C.L.: Nanomechanical properties of commercial float glass. J. Non-Cryst. Solids. 354, 1891–1899 (2008)

    Article  CAS  Google Scholar 

  30. Stevels, J.M.: Progress in the theory of the physical properties of glasses. Elsevier Publishing Company, Inc., New York, Amsterdan, London, Brussel (1948)

    Google Scholar 

  31. Rouxel, T.: Elastic properties and short-to-medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007)

    Article  CAS  Google Scholar 

  32. Svenson, M.N., Thirion, L.M., Youngman, R.E., Mauro, J.C., Bauchy, M., Rzoska, S.J., Bockowski, M., Smedskjaer, M.M.: Effects of thermal and pressure histories on the chemical strengthening of sodium aluminosilicate glass. Front. Mater. 3, 1–11 (2016)

    Article  Google Scholar 

  33. Shannon, R.D.: Revised effective ionic radii and systematic studies of interactomic distances in halides and chalcogenides. Acta Cryst. Sec. A. 32, 751–767 (1976)

    Article  Google Scholar 

  34. Kalman, H., Portnikov, D.: Analyzing bulk density and void fraction: A. the effect of Archimedes number. Powder Technol. 381, 477–487 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 51872092, 52072122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luyi Sun or Huidan Zeng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Yan, J., Wang, L. et al. Chemical strengthening of Li+-containing phosphosilicate glass via a two-step ion-exchange process. J Aust Ceram Soc 57, 1285–1290 (2021). https://doi.org/10.1007/s41779-021-00625-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00625-x

Keywords

Navigation